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1 INTRODUCTION 

Five defining properties of an NLP problem determine which decomposition 

method is appropriate.  The report reviews and compares prevalent methods in the 

context of these properties to develop a set of relationships between a given problem 

structure and a coordination strategy.  Two of the most important properties are linking 

variables and linking functions which are most easily defined by the functional 

dependence table (FDT)  discussed  in Section 2.  The other three determine convergence 

properties of the methods.  The defining properties, the coordination strategy, and the 

merits and demerits of each method are itemized: prevalent hierarchical methods are 

presented in Section 3; prevalent non-hierarchical methods are presented in Section.4.  

Features are compared and summarized in Section  5.  Inherent in each of the methods is 

an authority model which is also discussed.  The report emphasizes defining properties of 

the NLP and features of the coordination strategy and hence, the reader is referred to the 

original sources for more explicit details of the algorithms in each coordination strategy.   
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2 DEFINING PROPERTIES 

The most important defining properties are linking variables  and linking 

functions.  Linking variables are loosely defined as variables that, when held fixed, effect 

independent optimization problems; similarly, linking functions (usually constraints) are 

loosely defined as functions that, when deleted (relaxed), effect independent optimization 

problems. Rigorous mathematical definition of these properties is given in Chapter 3 of 

Wagner (1993). 

A useful artifice for characterizing defining properties is a table of Booleans 

called a functional dependence table (FDT).  Using the integers '1' and '0' for true and 

false, respectively, rows are labeled with function names, columns are labeled with 

variable names, and the element in the ith row and jth column is non-zero if the ith 

function depends on the jth variable.   

The functional dependence table for the example NLP given as Equation (1) 

(from Kirsch [1981]) is shown in Table 1.  Each term in the objective is represented 

separately in the FDT.   

 min  f (x) = 400 x1  + 20 x2  +  130 x
2
3     

subject to: g1(x) = 190 x
2
1  - 43.6 + 14.9 x4  - 1.44 x

2
4   ≤ 0 

  g2(x) = 38 x
2
2  - 183.3 + 36 x4   - 2.67 x

2
4   ≤ 0  (1) 

  g3(x) = 650 x
2
3  -  244 + 45.9 x4  - 3.29 x

2
4   ≤ 0   

  g4(x) = 3.5 - x4      ≤ 0 

  g5(x) = x4  - 6.5     ≤ 0 

The FDT’s of many NLP problems are presented in this report, and shading facilitates an 

easy visual comparison of the structure.  Figure 1 (a) shows Table 1 using shading for the 
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Boolean value 'true'.  If variables and functions are partitioned into vectors with disjoint 

index sets, compact forms like Figure 1 (b) can be constructed.  In the compact form, a 

shaded block implies that a k-vector of scalar-valued functions depends on an j-vector of 

variables.  Every function in the k-vector need not depend on every variable in the j-

vector, but every function in the k-vector depends on at least one variable in the j-vector 

and every variable in the j-vector appears in at least one function in the k-vector.  For 

example, in Figure 1(b), the functions f1 and f2, do not depend on x3, but the function 

partition, f1 = (f1, f2, f3), depends on the variable partition, (x1) = (x1, x2, x3).  Formally, 

the compact form can be constructed if and only if the columns in the k x j sub-table of 

the original dependence table can be arranged such that at least a diagonal of non-zero 

entries exists. 

Table 1.  
  Functional Dependence Table for (1) 

 x1 x2 x3 x4 
f1 1 0 0 0 
f2 0 1 0 0 
f3 0 0 1 0 
g1 1 0 0 1 
g2 0 1 0 1 
g3 0 0 1 1 
g4 0 0 0 1 
g5 0 0 0 1 

 

f

f

f

g

g

g

g

g

1

2

3

1

2

3

4

5

  x         x          x        x      
1          2         3        4

f

f

1

2

  x         x               
1          2         

f  = (g  , g  , g  , g  , g  )
 2

x  = (x  , x  , x   ) 1

x  = (x  ) 4    2 

f  = (f  , f  , f   ) 1    2     31

1     2     3    

1     2     3     4     5

 
    (a)   (b)   
 Figure 1. (a) FDT using shading for Booleans (b) FDT by vector partitions. 
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Additional defining properties are additive separability, linearity, and convexity.  

Additive separability exists when a function (constraint or objective) is a sum of terms, 

each term dependent on a subset of the problem variables, the subsets being disjoint. For 

example, the objective in Equation (1) is additively separable.  Linear properties allow 

use of more classical techniques, as in Lasdon [1971]; convex properties often guarantee 

convergence; monotonic properties facilitate analytic solution in the subproblems.  

Linearity is easily identified; techniques for identifying and exploiting monotonicity are 

well documented (Papalambros and Wilde, [1988]).  The defining properties are 

summarized in Table 2.    

 
Table 2 

  Defining Properties of NLP Problems Utilized in Decomposition 

  
   1.  Linking variables 
   2.  Linking constraints 
   3.  Additive separability  
   4.  Linearity/Convexity 
   5.  Monotonicity  
 

Most decomposition methods exploit at least one of the defining properties to 

construct a coordination strategy.  Certain variables are identified as coordinating 

variables, the remainder as local variables.  A master problem is formulated in terms of 

coordinating variables; subproblems solve for optimal local variables treating the 

coordinating variables as parameters.  This generic strategy applies to hierarchic and non-

hierarchic methods and is summarized in Algorithm 0. 
 
 Algorithm  0: Generic Coordination Strategy for NLP Decomposition Methods. 
1. Initialization. 
2. Solve master problem to obtain optimal coordinating variables. 
3. Solve subproblem(s) to obtain optimal local variables. 
4. Optimality or Convergence Test.  
5. If Step 4 fails make modifications based on Step 4 information and return to Step 2; 

otherwise stop. Decomposed solution solves original problem.   



 

 5 

The selection of coordinating variables depends on the properties of the optimization 

problem.  Generally, feasible decomposition methods choose linking variables as 

coordinating variables;  dual decomposition methods choose dual variables associated 

with the linking constraints as coordinating variables.  Separability in the objective 

function or constraints often effects a separable Lagrangian which can be decomposed.  

Specific instances of linearity, convexity, and monotonicity enhance convergence 

properties of the coordination strategies.        

3 HIERARCHICAL DECOMPOSITION METHODS 

Dual Decomposition Methods 

 The Lagrange formulation transforms a constrained problem into an 

unconstrained minimization problem.  The  Karush-Kuhn-Tucker conditions cast the 

NLP problem as a set of nonlinear zero-valued equalities.  The regularity assumption 

guarantees existence of the Lagrange multipliers, λ  and µ, for equalities and inequalities 

respectively.  For differentiable functions, the stationarity conditions imply that an 
interior optimum, (x*, λ*, µ*), is a saddle point of the Lagrange function, L.  

Formulation of the dual problem leads to the min-max iterative strategy that serves as the 

generic algorithm for dual decomposition methods given as Algorithm 1.  Figure 2 

illustrates the strategy.  Necessary conditions can be exploited to derive update formulas 

for the dual variables. 
 
 

   Master Problem in dual space.  

  max 
λ   µ

  L (λ, µ, x*)  

       λ*,µ*  ⇓    ⇑ x*   
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  min 
x 

   L (λ*, µ*, x)  

    Subproblem in primal space.   

 Figure 2  Two level structure of dual methods.   
Algorithm 1: Coordination Strategy for Dual Decomposition Methods.  
1. Initialize k = 0, (xk, λk, µk) . 
2. Holding (λk, µk) constant, obtain xk

*  by solving  

   min 
 x 

   L(λk,µk, x)  

3. Holding xk
*  constant, obtain (λk

* , µk
* ) by solving  

   max 
λ  µ

   L(λ, µ, xk
*  )  

4. If converged stop; otherwise  increment k, set (xk, λk, µk) = (xk-1
*  , λk-1

*  , µk-1
*  

) and go to 2. By formulating the dual, the original NLP problem is partitioned into a two 

level problem where the optimal dual variables are sought in the master problem and the 

optimal primal variables are sought in the subproblem.  If the objective function and the 

constraints are sums,  the vector x can often be partitioned into p  vectors, xi; i = 1,..., p 

where the indices of xi and xj form disjoint sets for i≠j.  The Lagrangian can then be 

partitioned  into p  functions,   

 L(x, λ, µ)  = L1(x1, λ, µ)  + L2(x2, λ , µ) + ... + Lp(xp, λ , µ).    (2) 

resulting in p  independent subproblems. 

Three prevalent dual methods by Dantzig and Wolfe [1960], Takahashi [1964], 

and  Lasdon [1968], have the common defining property of linking functions.  To 

facilitate a concise description of each method, an FDT schematic of the original problem 

is presented followed by a table with the format of  Table 3.  The original problem is 

stated in the upper left entry; properties and reformulations are listed in the upper right 

entry; the master problem is shown in the lower left; the subproblem(s) in the lower right.  

Variable value passing is shown in the middle column.    
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The classical dual decomposition method proposed by Dantzig and Wolfe [1960] 

is applicable to any linear program, but is very effective in solving LP problems with 

constraint sets having the FDT shown in Figure 3.  The primal form of such problems, 

given in Table 3, is a set of p linear programs linked by the constraints, A0x = b0.  The 

master problem is formulated in terms of the extreme points of the feasible domain.  

Assuming the p polytopes, Si = {xi: Aixi = bi; xi ≥ 0} are bounded, any point, xi can be 
represented as a weighted sum of its ti extreme points, (xei1,..., xeiti). The original problem 

can be rewritten as the master and subproblems in Table 3. 

Recall1  that for linear programs the basic feasible solution that minimizes the 

objective is the optimal solution and that a basic feasible solution is an extreme point.  

Starting with an initial basic feasible solution, the simplex method iteratively solves the 

linear program by updating the basic feasible solution based on the non-basic variable 

that most reduces the objective function.  The measure of that reduction is called the 

relative cost coefficient.  

The Dantzig-Wolfe method implements the simplex method in a two step fashion. 

Given a basic feasible solution, xb, the master problem determines the optimal weighting 

coefficients, α , which in turn allow computation of the simplex multipliers, λ ,  associated 

with the basic feasible solution.  The multipliers associated with the linking constraints,  

λo, are a sub-vector of λ, and their values are passed to the subproblems as parameters.  

The minimum cost coefficient associated with non-basic variables in each of the 

subproblems is an explicit function of the ith  subproblem solution, xi* and the 

multipliers, λ .  The subproblem with the minimum cost coefficient that most reduces the 

objective contains the non-basic variable to update the basic feasible solution.  The size 

                                                

1 See Bazaara et al. [1990] or Luenbuerger [1984] for a thorough review of linear 
programming solution methods.   
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of the subproblems effects reduced storage and computation in determining the relative 

cost coefficients.  It constitutes the numerical advantage of the method.  The algorithm is 

summarized in Algorithm 2.  

  

  

Table 3 
 Dantzig-Wolfe Decomposition   

Dantzig-Wolfe   
Original Problem  Properties/Transformations 
min

x
   cTx 

s.to:  Ao x = bo 
 Ai xi = bi  i = 1, ., p. 
 x ≥ 0 

 Linear in x 
Linking functions: Ao x = bo 
Extreme points transform:   xi = 

Σ 
j=1
  
ti

    αij xeij  

i = 1,..., p 
Cost of the jth extreme point: 
(scalar): pij = cTxeij 
p = (p11,..., p1t1, ..., pp1,..., pptp) 
Activity vector:  qij = Aoxeij  
Define: 
α  = (α11,..., α1t1, ..., αp1,..., αptp)T 
p = (p11,..., p1t1, ..., pp1,..., pptp)T 
q = (q11,..., q1t1, ..., qp1,..., qptp) 
Basic solution: xb 
Basis matrix: B 

Master Problem  Subproblem 
min 
α

        pTα   

s.to:  q α  = bo 

 Σ 
j=1
 
ti

   αij = 1:  i = 1,..., p 

 α  ≥ 0 
 
 λT = cT

b 
 B-1 

 λo = first m rows of λ  

 
λo⇒  
 
 
 
 
⇐ 
new 
basis 
xb 

min 
xi

  (ciT -λoTAoi) xi 

s.to:  Ai xi= bi 
 xi ≥ 0 
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 Figure 3.  FDT schematic of LP constraints in D-W Decomposition.   
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Algorithm 2: Coordination Strategy for Dantzig-Wolfe Decomposition.  
1. (Initialization) Select an initial basis feasible solution for the master problem. 
2. (Master Problem) Solve the master problem to obtain the multipliers, λ .  
3. (Subproblem) With λ  fixed, obtain the optimal solution  xi* for each subproblem. 

Compute the minimum cost coefficient associated with each subproblem.  
4. (Optimality Test)  If all cost coefficients are non-negative, stop. The current basic 

feasible solution is optimal.   
Otherwise, use the solution of the subproblem with the minimum cost coefficient to 
update the basic feasible solution. 

5. Return to 2 with the new basic feasible solution.  

The economic interpretation of the decomposition method, considers the LP 

problem as a model of a multidivisional firm minimizing cost with constraints on shared 

resources.  If management regulates prices that the divisions must pay for common 

resources, the division that can best reduce cost at those prices is incorporated into the 

master plan.  Initialization of the basic feasible solution is interpreted as management 

formulating a master plan; computation of the simplex multipliers is interpreted as 

management setting prices.  In Step 3, each division reports its potential cost 

improvement based on the prices, the activity with the greatest improvement is 

determined in Step 4, and the master plan is updated in Step 5. 

Takahashi [1964] proposed a dual method for convex programs which have the 

FDT schematic of Figure 4 and linear constraints of the form in Table 4.   The method 

makes no assumptions about separability of the objective function. The constraints, hc, 

are coupling constraints in the sense that the problem would be easier to solve without 

them.  For example, the remaining constraints, hs, may possess the structure shown in 

Figure 4.  Formulating the dual of the coupling constraints, hc, yields the master problem 

and subproblem given in Table 4.  Since λc is unconstrained, any direction for λ  in the 

master problem is feasible.  If the objective function is convex, it can be shown that the 

dual function, h(λ), is differentiable (Geoffrion [1971]).  Because the dual is linear in 

λ , the gradient of the dual,  
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   ∇λc  h(λ) = hc (x),     (3)  

is a feasible direction for improving the objective of the master problem.  Takahashi 

suggests Algorithm 3, which uses a short step, α, in the direction of the gradient.  A  line 

search could also be used in Step 4. 
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Figure 4.  FDT schematic for Takahashi’s Dual Decompostion Method.  
Table 4. 

Takashi’s Decomposition.   
Takahashi   
Original Problem  Properties/Transformations 
min
 x 

    f(x)  

s. to:  hc (x) = 0 
 hs(x) = 0 
 x ∈ Sb (simple bounds) 

 Convex f(x) 
Linear constraints 
Linking functions: hc (x) 
 

Master  Problem  Subproblem 
max
 λc 

     h(λc) = f(x) + λcThc (x) λc⇒  
 
⇐ x 

min
 x 

     f(x) + λcThc (x)  

s. to: hs (x) = 0 
 x ∈ Sb (simple bounds) 

   
 
Algorithm 3: Coordination Strategy for Takahashi’s Dual Decomposition.  
1.  Initialize k = 0, and the multipliers, λc = λk. 
2.  (Subproblem) Solve the subproblem to obtain xk

* . 
3. (Optimality Test) If hc (xk

* ) = 0 (or  ||hc (xk
* )|| ≤ ε), then xk

*  is optimal.  Stop.  
Otherwise go to 4. 

4. (Master Problem) Let λk+1 = λk + α hc (xk
* ) where α > 0.  Return to 2.   
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The NLP problem with the FDT in Figure 5 has the separability properties 

summarized in Table 5.  The objective function and the constraints are additively 

separable; Lasdon proposed Algorithm 4 below for such problems.  The formulation 

given in Table 5 shows only inequalities but the method can be applied to probems with 

equalities.  The Lagrange function is additively separable with respect to the variables xi 

and linked by the multipliers, µ .  The coordination strategy  in Algorithm 4 solves for µ  

in the master problem and for xi in each of the subproblems.  
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 Figure 5.  FDT schematic for Lasdon’s Dual Decomposition Method. 
 
 
 
 
 
Algorithm 4: Coordination Strategy for Lasdon’s Dual Decomposition. 
1. Initialize k = 0 and µk  ≥ 0. 
2. (Subproblem) Solve the subproblems with µ =µk   to obtain a solution xk

* .    
3.  (Master Problem) Solve the master problem using the gradient of the dual as a search 

direction and a line search in α. 
4. (Convergence Test) If || µk  - µk-1  || < ε stop; otherwise µk+1  = µk  + αsk , increment 

k and return to 2. 
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Table 5.  
Lasdon's Decomposition.   

Lasdon   
Original Problem  Properties/Transformations 

   min      Σ   
x1... xp  i=1           

p
   fi (xi) 

 s. to:  

gj (x) =  Σ  
i=1 

p
   gji(xi) ≤ 0; j = 1,..., ng 

 

 f(x) separable wrt xi 
gj(x) separable wrt xi ; j = 1,..., ng 
 

Master  Problem  Subproblem 

max 
α 

   h(µ ,α) =  Σ 
i=1 

p
   fi(xi) 

     + (µ   + αs )Tg (x) 
s. to:  α ≥ 0 
Search direction, s: 
sj = gj(x)  if µj > 0  
  = max (0, gj(x))   if µj = 0  
     j = 1,...,ng 
 

µ⇒  
 
⇐ x 

min 
xi

   fi (xi)  +  Σ  
j=1 

ng
   µj gji(xi) 

 
i = 1,...,p 
  

 

 

Lasdon suggests a gradient-based algorithm with line search for solving the 

master problem in the dual space. In the case of equality constraints, variable metric  or 

conjugate gradient methods are suggested.  Since the Lagrangian is nonlinear in x, the 

subproblem solutions implicitly depend on µ .  Note, x*(µ ) may be non-smooth with 

respect to µ.  In such regions, the derivative of the dual,   

    ∇µ  h(µ) =  g(x(µ ))      (4) 

will not be continuous; only one-sided derivatives will exist.  Lasdon suggests a piece-

wise linear approximation to the dual to surmount this difficulty.  Convergence is 

guaranteed as long as h(µ) remains differentiable. 

Dual decomposition methods exploit separability in the Lagrangian effected when 

dual variables are held fixed.  The design interpretation of the master problem is that of a 
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coordinator setting priorities (the multipliers) to which the subproblems respond.  

Structure can be imposed at the expense of dimensionality to allow use of a dual method 

as discussed next.     

Goal Coordination  

Constraint sets linked as shown in Figure 6, can be decoupled by introducing 

additional primal variables and equalities.  Decomposition is obtained at the expense of 

added dimensionality.  For example, if the constraint vectors g1 and g2 are coupled 

through a variable x, they can be decoupled by adding a variable, y, an equality h(x,y) = x 

-y = 0, and respective multiplier λ.  A dual formulation controls λ in the master problem.  

For ny variables, separability is imposed by introducing an ny-vector of variables, y, and 

ny equality constraints.  Under such circumstances the multipliers associated with the 

equalities appear in the master problem. Dual methods of this type are called goal 

coordination  methods because the master problem is coordinating the goal of meeting 

the equality constraints. 
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Figure 6. FDT Schematic of effect of introduction of y on constraint set for Goal 
Coordination Methods. 

Wismer and Chattergy [1978] proposed this approach even when the coupling is 

high and use the KKT conditions to derive a gradient algorithm for the master problem.  

They note, however, that the variable bookkeeping is arduous.  For a completely coupled 

constraint set,  the approach implies the introduction of (p-1)n new variables and 

equalities, which for p ≥ 2,  effects a master problem larger than the original.  The merit 
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of imposed structure at the expense of added dimensionality determines the cost-to-

benefit ratio of the method.  Diaz and Belding [1991] formulate a master problem using 

goal programming  instead of the dual to accommodate problems with such structure.      

Feasible Decomposition Methods 

The fundamental characteristic of a feasible method is that the original design 

variables are partitioned into two sets: global  variables y and local  variables x.  The 

values of the vector y vary in the master problem, the optimal values y* are treated as 

parameters in the subproblem; the values of the vector x vary in the subproblem and the 

optimal values x* are returned to the master problem.  The simplest two-level structure is 

illustrated in Figure 7.  The methods are sometimes called model coordination 

methods because model variables are coordinated in both the master problem and the 

subproblems.  The methods are attractive in design problems because even if 

convergence of the coordination is not obtained, the intermediate solutions are feasible 

and usually represent an improvement in the objective function.  The design 

interpretation of the master problem is that of a coordinator who has authority over 

variables common to design groups which act independently. 

The subproblem solution, x*, typically depends on y, and this must be accounted 

for in the master problem for the method to have convergence properties.  Rarely, is an 

explicit solution obtained, so an approximation of the dependence x*(y) is usually 

required.  Numerical continuation methods can trace out x*(y) when the dimension of y is 

small, (three or less) and a linear approximation can be constructed using sensitivity 

derivatives when the dimension of y is larger.  Allgower and Georg [1990] present a 

comprehensive review of continuation methods, and Beltracchi [1988] gives a 

comprehensive review of the computational methods for sensitivity derivatives.  These 
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coordination strategies are sometimes called projection methods because the subproblem 

solution is ‘projected’ onto the y space (Geoffrion [1971]). 

  Master problem in coordinating variables y.  

  min
y� Rny

  f(y,x*)  

 h(y) = 0 
 g(y) ≤ 0 

       y* ⇓    ⇑ x*   

  min
x� Rn

  f(y*,x)  

 h(y,x) = 0 
 g(y,x) ≤ 0 

    
    Subproblem in local variables x. 

 Figure 7.  Two level structure of feasible methods. 
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Figure 8.  FDT schematic for Johnson’s  Two-Stage Decomposition. 

Johnson [1984a] proposed a straightforward decomposition method given as 

Algorithm 5 for problems with the structure shown in Figure 8. 
 
Algorithm 5:Coordination Strategy for Johnson’s Two-Stage Decomposition. 
1. (Subproblem) Solve the subproblem of Figure 7 to obtain the single-valued vector, x* 

=  x*(y). 
2. (Master Problem) Solve the master problem  of Figure 7, either analytically, or using a 

conventional numerical scheme, using x* =  x*(y) to obtain y*. 
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Assuming a relationship, x* = x*(y), can be determined in the subproblem, the 

master problem seeks y* to minimize the objective function, f(y,x*(y)).  Johnson's 

exposition assumes the partition is chosen such that optimality conditions in the 

subproblem can yield an explicit single-valued relationship, x* = x*(y).  If an analytical 

solution is determined also in the master problem, a global optimum is obtained and the 

method should converge in one overall iteration.  Finding a partition that guarantees an 

explicit single-valued function a priori is not trivial.  In some cases, even if x* = x* (y) 

exists, nonlinearities may make the master problem of lower dimension but more difficult 

to solve than the original problem of higher dimension.  While not addressed by Johnson, 

the requirement for an explicit relationship may be circumvented if the optimality 

conditions of the subproblem are used to derive an approximation of x*(y).  For example,  

sensitivity derivatives in the subproblem could provide a linear approximation that could 

be used in the master problem. 

Separable Methods 

NLP problems with the primal form given in Equation  (5) can utilize several 

feasible decomposition methods. 

     min      Σ  
y x1... xp  i=1             

p 
  fi (y, xi) + fo (y)  

 subject to   h (y) = 0  
   g (y) ≤ 0 

  hi(y, xi) = 0 for i = 1, ..., p 
   gi(y, xi) ≤ 0 for i = 1, ..., p     (5) 
   y ∈ Sb ny   
   xi ∈ Sb ni   

Sbn represents simple bound or side constraints in Rn.  Figure 9 illustrates the 

FDT of  Equation (5). The objective function is a sum,  and the vectors gi and hi are 

independent of xj, for i, j = 1, .., p  and i≠j.   The Lagrangian is then additively separable 

with respect to  (xi, λ i µ i ) for i = 1, .., p,      
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L(y, x, λ, µ)  = Ly(y, λy, µy) + L1(y, x1, λ1, µ1) +  ... + Lp(y, xp, λp, µp). (6) 

If y is temporarily treated as a parameter,  the p  terms of the Lagrangian can be 

minimized independently.   
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 Figure 9.  FDT shematic of NLP for a separable feasible decomposition method.  

Kirsch [1981] suggests Algorithm 6 for the master-subproblem pair given in 

Table 6.   
Algorithm 6: Coordination Strategy for Kirsch's Decomposition.  
1. Initialize k = 0 and initialize the global variables y = yk . 
2. Holding yk  constant, solve the p  independent subproblems of Table 6 with respect to 

xi to obtain x*i . 
3. Modify the value of yk  to yk+1  to reduce the objective in the feasible domain by a 

sufficient amount, δ,  

  ∑
i=1

p
   fi (yk+1 , x*i ) - ∑

i=1

p
  fi (yk , x*i ) ≤ δ. 

4. If convergence criterion are met, for example,  || yk  - yk+1  ||≤ ε, stop;  
otherwise increment k and return to 2. 



 

 20 

Table 6 
Kirsch’s Decomposition. 

Kirsch   
Orignal Problem  Properties / Transformations 

min 
y x 

  fo(y) + Σ
i=1
 
p

  fi(y, xi)  

s. to: h(y)       = 0 
 hi(y,xi)  = 0 i = 1,..., p 
 g(y)      ≤ 0 
 gi(y,xi) ≤ 0 i = 1,..., p 

 Lagrangian separable when y is fixed.   

Master Problem  Subproblem 

min 
y 

   fo(y) + Σ
i=1
 
p

  fi(y, xi(y))  

s.to:  h(y)  = 0 
 g(y)  ≤ 0 

y ⇒  
 
⇐ x 

min  
xi  

  fi(y, xi) 

s.to: hi(y, xi) = 0  
 gi(y, xi) ≤ 0. 
 i = 1,..., p 

Step 3 is the essence of a robust algorithm.  Kirsh offers no formal algorithm for 

step 3 but presents several examples which use analytical solutions x*(y) to determine 

directions in y.  Algorithm 6 serves as a generic algorithm to describe feasible 

decomposition methods which utilize separability in the objective and constraints.  If 

explicit subproblem solutions, x*i(y),  exist and are used in Step 3, Johnson's multistage 

decomposition method [1984b] can be interpreted as an implementation of Kirsch's 

method. Also, the algorithms of Rosen [1963], Benders [1962], and Azarm and Li  [1988] 

can be viewed as special forms of this generic algorithm.  These are described next.   

The specific form of the original problem for Rosen’s method is given in Table 7.   

The feature of this structure is that for fixed y, the problem decomposes into p 

independent linear programs in xi  given  as the subproblems in Table 7.  By solving the 

linear programs independently and constructing a piece-wise linear approximation of xi 

(y) in the subproblem, a master problem is constructed strictly as function of y.  Solution 

of the linear subprograms with the simplex method yields optimal basis matrices and 

simplex multipliers that are used to set up a master problem in y.  The algorithm 

converges for the case when the cost vector c and the constraint matrix A are independent  
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of y, and the constraints b(y) are convex.  Algorithm 7 summarizes Rosen’s method.  

 

Table 7 
Rosen’s Decomposition  

Rosen   
Original Problem  Properties/Transformations 

min  
y x

  Σ
i=1
 
p

  ci(y)T  xi+ co(y)  

 s. to:  bi(y)  - Ai(y)  xi ≤ 0 i = 1, ..., p. 
       y ∈ S feasible domain)  
 
 
 

 Linear in xi ; i = 1, ..., p.  
Define basis, B, non-basis, D. 

Ai  =
 


 
Bi
Di

  bi  = 





 
bBi(y)
bDi(y)     

Qi  = Di  B
-1
 i  . 

Linear approximation of constraints in y.  
Master Problem  Subproblem 

min
y

  ϕ(y) =  Σ  
i=1 

p
   λ*i  T bBi(y) + co(y) 

  
[Qi  ∇y b Bi(y)  - ∇y bDi(y) ] ( y - yk )  

≥ bDi(y
k)  - Qi bBi(y

k)  
 
 

 
y ⇒  
 
 
 
 
⇐  
λ*i   

 
min

x
  ci

T  xi 

s. to: bi(y)  - Ai (y)  xi ≤0. 

LP solution: x*i  = B
-1
 i   bBi(y)  

                  λ*i  = c iT B
-1
 i    

   
Algorithm 7: Coordination Strategy for Rosen's Decomposition.  
1. Initialize k=0; choose a feasible vector yk  = yo  ∈ S. 
2. (Subproblem) Solve the linear subproblems with y = yk , obtaining optimal solutions 

x*i ,  basis matrices Bi  and simplex variables λ*i    
3. (Master Problem) Solve the master problem to obtain y* .    
4. (Optimality Test)  If ϕ(y* ) converged, 

 and  all simplex multipliers are  non-negative the solution is optimal. Stop. 
 Otherwise the ith linear subproblem containing the least simplex multiplier contains 
the non-basic variable to be used in updating the basis matrix.  Update and return to 3.  

5. (Feasibility Test) If ϕ(y* )< ϕ(yk ) check feasibility.  
(a)  If no constraints are violated, set k = k+1, return to 2 with yk  = y*   
(b)  If some constraints are violated, perform line search into feasible region and 
update 
       y*  based on line search. 
(c) If line search is unsuccessful, the violated constraint identifies non-basic variable 
for 
     basis update.  Using this new basis return to step 3.  
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Table 8 
Benders’ Decomposition 

Benders   
Original Problem  Properties/Transformations 
min 
y x

  cT  x + f(y) 

s. to:  b - Ax - F(y) ≤ 0 
         x ≥ 0  
         y ∈ S. 

 Linear in x 
Formulate dual in x and solve using a 
relaxed constraint set.  

Master Problem  Subproblem 
min 
y vo 

  vo  + f(y)  

s. to: vo ≥ (b - F(y))T  µ
p
i   i ∈ I

'
p   

        (for some extreme points) 

        0 ≥ (b - F(y))T µ
r
i  0  i ∈ I

'
r   

        (for some extreme rays)      

y,vo  ⇒  
 
 

⇐ µI
'
r 

,I
'
p   

v(y) = max  
µ  

(b - F(y))T  µ   

 s. to:   ΑT  µ ≤ c 
            µ  ≥ 0 

Benders [1962] proposed Algorithm 8 for problems of the original form in Table 

8.  The matrix A is m xn, x and c are n-vectors, b an m-vector, y a ny-vector, f a scalar 

valued function of y,  F is an m-vector of scalar functions dependent  only on y, and S is 

an arbitrary subset of Rny.  No assumptions are made about linearity with respect to y, nor 

continuity on S.  The set S may also be discrete valued.  The algorithm exploits the y-

dependence of the constraint set to formulate a subproblem relating y and x.  The 

linearity with respect to x in the subproblem is exploited to formulate a dual subproblem 

in terms of extreme points. A relaxation strategy is used to reduce the dimensionality of 

the dual formulation. 
 
 Algorithm 8: Coordination Strategy for Benders’ Decomposition.   
1.  Initialize the index sets of the extreme rays and extreme points to the empty set.   
 Solve the master problem with respect to y and vo.     

(a) If it is infeasible, stop; original is infeasible.  
(b) If it is finite, it is optimal. Stop.   
(c) If it is unbounded, go to 3. 

3. (Subproblem)  Solve dual form of the subproblem wrt µ   (y is fixed) and obtain v'(y). 
(a) If dual is infeasible stop; original is unbounded. 
(b) If dual is unbounded go to 6. 
(c)  Go to 4. 
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4.(Subproblem Optimality Test)  
(a)If v*(y)  = vo, Stop.  The current vector, (y, x) solves original prolem.  
(b) Otherwise v*(y)  < (b - F(y))T  µ∗   for some multipliers.  Go to 5.  

5. (Dual is bounded but Optimality Test failed)  
(a) Update index set, Ip and constraint on vo to vo ≥ (b - F(y))T  µ∗  and return to  

6.(Dual unbounded) The simplex method will locate some extreme ray and an extreme 
point such that the dual objective approaches +∞ along a half-line of the two.  Add the  
ray index to the master problem.  In addition, if the constraint containing the extreme 
point is violated, add the point index to the master problem.  Return to (2).    

Table 9 
Azarm and Li’s Decomposition.  

Azarm and Li   
Original Problem  Properties/Transformations 

min 
y x 

   fo(y) + Σ
i=1
 
p

  fi(y, xi)  

s. to:  g(y) ≤ 0 
 gi(y,xi) ≤ 0 i = 1, ..., p  

 Monotonic in xi 

Master Problem  Subproblem 

min 
y 

    fo(y) + Σ
i=1
 
p

  fi(y, x*i(y)   

s. to:  g(y) ≤ 0  
 

y ⇒  
 
⇐ x*(y)   

min 
xi 

     fi(y, xi) 

 
s. to:  gi(y,xi) ≤ 0 i = 1, ..., p 

If the NLP in Equation (5) has no equality constraints and is monotonic in xi, in 

both the objective function and in every constraint of the ith subproblem, Azarm and Li’s  

Monotonicity Based Decomposition Method (MBDM) can be used.  Table 9  gives the 

master problem and subproblems.  Global monotonicity properties surface in the 

subproblem that can be exploited when y is fixed.  Problems with only linear terms in x 

and cross terms y x can readily exploit this method. The method also assumes the number 

of active constraints is exactly equal to the dimension of xi.  This assumption may 

preclude use of the method on many problems.  The partition allows elimination of 

known inactive constraints (in the subproblems) reducing the dimensionality of the 

master problem.  In this context it may be viewed as a special model reduction technique.  

The strategy is summarized in Algorithm 9.  
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Algorithm 9: Coordination Strategy for Azarm and Li's Decomposition.   
1. Initialize k = 0,  yk = y0. 
2. (Subproblem) Use monotonicity to solve subproblems and obtain x*i(y) . 
3. (Master Problem) Solve the master problem with respect to y using a conventional 

method to obtain y*. 
4. If f converges stop; otherwise, increment k, set yk = y* return to 2. 

The key difficulty with the method is that the monotonicity analysis usually yields 

more than one candidate active constraint in step 2.   If, for the ith subproblem, there are 

Ki candidate active sets, and qij(y) is the solution vector resulting from the jth candidate 

active set for the ith subproblem, the subproblem solution x*i(y)  can be expressed as 

  x*i(y)  = max {qij(y); j = 1, ..., Ki}.   (6) 

Evaluation of the max function in the subproblem, requires an estimate of y.  Moves in y 

in the master problem may invalidate x*i(y) ; evaluating the max function in the master 

problem may introduce discontinuities, a real  difficulty for a conventional SQP 

algorithm.   

Three strategies could preclude this.  First, the master problem could be 

formulated as a mixed discrete problem where, the candidate solutions,  

    qij(y); j = 1, ..., Ki     (7) 

are treated as discrete variables.  Second, the max function could be evaluated in the 

subproblem and appropriate move limits on y also be computed and returned to the 

master problem.  Third, the candidate active constraints could be represented by a K-S 

function (Kreisselmeier-Steinhauser [1979]) which asymptotically envelopes the 

dominant constraint.  

The MBDM is very similar to Johnson's Multi-Stage Decomposition.  Johnson 

suggested solving the subproblems analytically and the master problem either analytically 

or using a conventional numerical method.  If monotonicity analysis is the method for the 

analytical solution in the subproblem and an SQP method solves the master problem, the 
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MBDM can viewed as an implementation of Johnson’s multistage method on problems 

with special structure. 

Wismer and Chattergy [1978] proposed a method where the objective is separable 

with respect to xi but the constraints are coupled.  The original problem, the master 

problem, and the subproblems  are given in Table 10. 

Table 10 
Wismer and Chattergy’s Decomposition 

Wismer and Chattergy   
Original Problem  Properties/Transformations 

         min    Σ  
x1... xp  i=1          

p
   fi (xi) 

 
s. to: gi(x) ≤ 0 
      xi ∈ R ni   for i = 1,..., p. 

 Objective separable 
Highly coupled constraints 
Lagrangian minimization 
Introduce y 
h(x, y) = x - y = 0 
gi(x) = gi(xi, y1, .., yj, .., yp) 
  j≠i 

Master Problem  Subproblem 

 min 
y

  Σ  
i=1
 
p 

  Li (y, x* ,λ*, µ* ) 

 

y ⇒  

⇐ x, λ , µ , 
∂g
∂y   

 
  min   
xi λ i µ i

  Li ( y*, xi, λ i , µ i )  

Figure 10 shows the FDT for Wismer and Chattergy’s method.  The strategy 

begins by introducing a vector of new variables, y, and a vector of equality constraints, 

h(x, y) = x - y = 0, both of dimension n.  The vector h is partitioned  into p  vectors, hi,  

and y is partitioned into p vectors yi each associated with vector xi.  The vectors hi and yi 

are each of dimension ni .  Since xj = yj, for j = 1,..., p, the following transformation 

holds for the ith vector of  inequality constraints,  

  gi(x) = gi(xi, y1, .., yj, .., yp; j≠i) = gi(xi, yj; j=1, ..., p; j≠i ). (8) 

To formulate the Lagrangian, introduce p  vectors of Lagrange multipliers λ i  associated 

with hi  and introduce p  vectors of Lagrange multipliers µ i  associated with gi.  Defining 

Lagrange functions for the ith  partition,    

 Li(xi, y,λ i ,µ i ) = fi (xi)+λ
T
i  hi (xi, yi )+ µ

T
i  gi (xi, yj; j=1, .., p; j≠i)  (9) 

the Lagrangian for the original problem is the sum,  
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  L (x, y, λ , µ) =  Σ  
i=1
 
p 

  Li (xi, y, λ i , µi )    (10) 

which effects p  independent Lagrangians when y is fixed.  A conventional SQP 

algorithm can usually solve this subproblem and provide (x*, λ* , µ* ).  The master 

problem is to minimize L with respect to y.  A gradient can be employed to reduce L on 

each iteration in the master problem,   

   y 
k+1
i   = y 

k
i  - α 








 Σ  
j=1
 
p ∂gj
∂yi

Τ

µ j - λ  i      (11) 

with α > 0. 
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Figure 10.  FDT schematic for Wismer and Chattergy’s Decomposition Method.   
 
Algorithm 10: Coordination Strategy for Wismer and Chattergy’s Decomposition.  
1. Initialize  k= 0, feasible x = xk, and yk = xk. 
2. Holding yk constant, solve subproblems using any method to obtain, (x*i , λ*i , µ*i  ) 
3. Update y in master problem using Equation (11). 
4. (Convergence test) If || f(y* ) - f(yk) || < ε, stop; 

Otherwise increment k and go to (2).  

Advantages to this method are that it can handle highly coupled constraint sets 

and the master problem converges if  local solutions are feasible.  When local feasible 

solutions cannot be found, the most recent feasible solution, while perhaps not optimal, 

has reduced the Lagrangian.  A line search in Step 3, instead of a fixed α may also be 

used.   
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One disadvantage is that the introduction of y doubles the number of variables in 

the problem.  Another drawback is that certain partitions of g may result in unbounded 

subproblems.  Subproblems need to be checked for boundedness as part of the 

subproblem solution. 
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 Figure 11.  FDT schematic for Sobieski’s Decomposition Method. 

    Sobieski [1982] proposed a method where the constraints can be partitioned 

with respect to xi  but the objective is not separable.  The FDT structure is shown in 

Figure 11 and the problem form is given in Table 11.  The objective function is only a 

function of global variables y.  Note that partitioning is not driven by any structure in the 

objective function.  Local variables, xi, appear only in the constraint set.  The constraint 

set is partitioned by the incidence of the local variables.  Such structure occurs when 

design objectives can be expressed as functions of many detailed variables, but all 

variables need not appear explicitly in the objective function.  Problems where the 

objective is expressed in terms of behavior variables which in turn are functions of 

geometric variables also tend to have this structure.   
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Table 11 
Sobieski’s Decomposition 

Sobieski   
Original Problem  Properties/Transformations 
   min      
y x1... xp 

  f(y) 

 s. to:  h(y)         = 0 
 g(y)         ≤ 0 
 gb(y)       ≤ 0 
 hi(y, xi)   = 0 
 gi(y, xi)   ≤ 0 
 gbi(xi)     ≤ 0  
 for i = 1, ..., p. 

 Non-separable opjective  
Separable constraints 

Master Problem  Subproblem 
 
 min

 y
  f (y)  

  
s. to:  h(y) = 0 
 gb(y) ≤ 0 
 gbi(x*i(y)) ≤ 0 
G(y) =  

 Σ 
j=1

ng
 <gj(y)>2  +  Σ 

j=1

p
 P*i(y) - P

k
t  ≤ 0 . 

y ⇒  
 
 
⇐   
P*i(y), 
x*i(y) 

min 
xi

   Pi (y, xi) =  Σ 
j=1

ngi
  <gij(y,xi)>

2  

 
s. to: hi(y, xi) = 0 
 gbi( xi ) ≤ 0 
where   
<gij(y,xi)> = 0       for gij(y,xi) ≤ 0 
                = gij(y,xi)  for gij(y,xi) > 0. 

Since the objective function is independent of x, it appears only in the master 

problem.  In the spirit of penalty methods, an objective function is formed for each 

subproblem, where a measure of constraint violation is minimized.  Assuming gi(y, xi) is 

a vector of scalar-valued functions defined on R ngi, a penalty associated with the ith  

subproblem, Pi(y, xi), is minimized as shown in the subproblem of Table 11.  If the 

sensitivity derivatives,  
    ∇y  Pi (y, x*)      (12) 

    ∇y  x*   

are also computed when solving the subproblem, a linear approximation of the 

subproblem solution can be constructed for use in the master problem.  The algorithm is 

summarized in Algorithm 11.  Note the bounds on xi are included in the master problem.  

No proof of convergence is given, but Sobieski suggests the addition of move limits on y 

to keep the linear approximations valid.    
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Algorithm 11: Coordination Strategy for Sobieski’s Decomposition.  
1. Initialize k = 0  and all variables y = yk  and xi  = x

k
i   for i = 1, ..., p.   

2. (Subproblem) For a given yk , solve the p  independent subproblems with respect to xi 
to obtain xk

*i . 
(a)  Compute sensitivity derivatives of the subproblem solution with respect to y, 
      ∇y  x k

*i  , ∇y  Pi (y, xk
*i ). ( Finite difference is suggested.)   

(b) Using the sensitivity derivatives computed in (a), construct a linear representation 
of 
      Pi (yk , x k*i )  and x k

*i  about the point yk  yielding xk
*i(y)  and Pi(y, xk

*i(y) ).   
3. (Master Problem) Solve the master problem with respect to y and obtain solution y* 
4. (Termination Test) If ||f(y*) - f(yk ) || ≤ ε and G(y) ≤ εg stop; otherwise set yk+1  = y*,  

xk+1
i   = x k

*i  and k = k+1.   Return to 2. 

The method can be interpreted as Langrangian decomposition in the context of 

penalty methods.  If all constraints except for simple bounds and equalities are 

represented with exterior penalty functions in a modified objective, the Lagrangian of the 

penalty formulation is additively separable with respect to xi.  The master problem 

minimizes this Lagrangian with respect to y and the subproblems independently 

minimize each of the terms in the Lagrangian with respect to xi.   

 Sobieski et al. [1985] used the method solve a three member portal framework 

problem.  The decomposed solution compared favorably to the solution obtained without 

decomposition.  In the portal frame problem,  the K-S cumulative constraint 

(Kresselmeier-Steinhauser, [1979]) was used instead of the penalty function given in 

Table 11.   

Parksinson et al. [1987] evaluated Sobieski’s decomposition method on several 

test problems from Stoecker [1981] but with a different approximation scheme.  Using 

Design of Experiment techniques to determine ‘test’ points in the y space, they 

approximated the subproblem solution dependence on y with regression equations.  The 



 

 30 

objectives of problems solved with decomposition were within a few per cent of the non-

decomposed solutions. 
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Table 12 

Summary of Defining Properties for Prevalent Hierarchical Decomposition Methods 
 Original  Problem Master Problem Subproblem Convergence 
Method Objective Constraint Manipulation Solution Solution conditions  
Dantizig-
Wolfe 
(Dual) 

Linear 
Program 

Some 
highly 
coupling 
constraints 

Formulatie dual 
wrt  coupling 
constraints 

Outer 
linearization 
Relaxation 

Simplex  Yes 

Takahashi 
(Dual) 

Convex Equalities; 
some 
highly 
coupling 
constraints 

Formulate dual 
wrt  coupling 
constraints 

Feasible 
Directions 

Conventional Yes 

Lasdon 
(Dual) 

Additively 
Separable 

Each 
constraint 
is 
additively 
separable 

Formulate dual Gradient 
method; or 
tangential 
approx. 

Conventional  Yes 

Wismer- 
Chattergy 
(Dual) 

Additively 
separable 

Highly 
coupled 

For p partitions 
introduce 
k- vectors y,h. 
k = np - n. 

Gradient for 
dual variables 
usingKKT 
conditions. 

Conventional Yes, if subproblems 
stay feasible;  

Diaz- 
Belding 
(Dual-like) 

Goal 
Programs 

Linking 
variables y 

 Conventional 
NLP (GRG) 

Conventional 
NLP (GRG); 
Sensitivity wrt 
to y 

Not guaranteed 

Johnson 
(Feasible) 

No special 
properties 

No special 
structure 

Projection Analytical or 
Numerical 

Analytical;  
Suggests 
M.O.D.  

Yes, if subproblem is 
single valued. 

Kirsch 
(Feasible) 

Additively 
Separable 

Linking 
variables y 

Projection No suggestions  Not guaranteed 

Rosen 
(Feasible) 

Linear in x  Linear in x Projection  Piecewise 
linear wrt y. 

Simplex 
Method 

Yes, if A,c are 
indepenndent of y.  

Benders 
(Feasible) 

Linear in x.  Linear in x  Projection Outer 
linearization/ 
Relaxation 

Dual or Primal 
Method 

Yes, explicitly for 
assumed form.  

Azarm-Li 
(Feasible) 

Additively 
separable 
monotonic 
wrt x.   

Linking 
variables y 
 

Projection SQP Monotonicity 
Analysis 

Yes,  if subproblem 
are single valued 
functions. (single 
step) 

Wismer- 
Chattergy 
(Feasible) 

Additively  
Separable 

Highly  
Coupled 

Introduce  
n-vector y 

Gradient 
Method (using 
KKT) 

Conventional Yes, if subproblems 
stay feasible 

Sobieski 
(Feasible) 

Not 
dependent 
on x 

Linking 
variables y 

Penalty 
formulation of 
linking 
constraints 

Conventional 
NLP method 

Conventional; 
Sensitvity 
analysis wrt y. 

Not guaranteed but 
move limits can help. 

 

The hierarchical methods reviewed in this section are summarized in Table 12.  

Dual methods have the common defining property of linking functions; feasible methods 

have the common defining property of linking variables.  Additional properties of 
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additive separability, linearity, and monotonicity determine the suitability of a given 

method for a given problem.  The underlying assumption to the use of these methods is 

the structure of the original problem, represented here by the structure in the FDT, is 

known. 

4 NON-HIERARCHICAL METHODS 

The methods reviewed thus far deal with independent subproblems generated 

when either linking functions or linking variables are accommodated in the master 

problem.   However, problems may have both linking functions and linking variables as 

the FDT’s of Figure 12 illustrate.  Using the methods described earlier, a three-level 

method could be used to decompose the NLP.   Use of a dual method would account for 

the linking functions, and the subproblem would be further decomposed using a feasible 

decomposition method;  such an approach is termed dual-feasible.  Here, linking in the 

subproblems is accounted for by using a feasible method to further decompose the 

problem.  Such a strategy is essentially a recursive decomposition, and could be invoked 

to any desired level.   

If the problem is highly coupled as in Figure 12 (b), such a method may not 

succeed.  To facilitate independent subproblems in such circumstances, approximations 

are required to account for the interdependence of the subproblems. Ritter [1967], 

Wismer and Chattergy [1978], Sobieski [1988], Pan and Diaz [1990], Wu [1991], and 

Unger et al. [1992] have proposed various methods to handle such coupling.  Such 

methods have acquired the name non-hierarchical decomposition because the 

information coupling is non-hierarchical.  Note, however, that each method has a 

coordination strategy that is strictly hierarchical.  The approximations are effectively 

‘cuts’ that allow non-hierarchical information coupling to be handled hierarchically. 
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The discussion that follows considers linear programs first.  Ritter [1967] 

proposed a method for NLP's with the structure in Figure 12 (a) which are linear in x, 

with linking variables y, and with linking constraints.  The subproblem is  the linear 

program in x with y fixed.  Solution of the subproblem yields basis vectors xib and non-

basis vectors xid.  The master problem is formulated as an NLP problem in y and non-

basis vector xid.  The master problem is interpreted as a relaxation strategy because 

explicit elimination of xib from the master problem effects relaxation of the constraints on 

xib.  Under explicit conditions, convergence is guaranteed and  computational experience 

with the method is given in Grigoriadis and Ritter[1968]. 

f
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  (a)       (b) 

Figure 12. FDT for NLP with linking functions and linking variables. (a) low coupling. 
(b) high coupling.     

 

Wismer and Chattergy [1978] suggested a relaxation strategy for decomposing 

highly coupled constraint sets in problems with an additively separable objective in xi.  

Introduction of an n-vector of variables y an n-vector of constraints,  

      h(y, x) = y - x = 0,    (13)  

and the KKT conditions yield an explicit relationship for the multipliers,      
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     λ  i  =  Σ  
j=1
 
p ∂gj
∂yi 

T

 µ j      (14) 

In each iteration of the coordination strategy, the master problem sets y = x* and 

computes λ  from Equation (14).  Clearly, the method requires the sensitivity derivatives 

∂g/∂y  in each subproblem.  These derivatives are the mechanism which accounts for 

subproblem coupling.   

Pan and Diaz [1990] presented an algorithm for decomposing a highly coupled 

NLP problem as follows.  The variables are partitioned into p arbitrary partitions xi and 

p subproblems are defined.  The ith subproblem solves the entire NLP with respect to xi  

holding all other variables fixed.  Results using the first order sensitivity theorem (Fiacco 

[1983])  are employed to develop a scheme for sequencing the solution of the 

subproblems.  The master problem examines the constraint activity in each subproblem 

and identifies a constraint active in all  subproblems.  The subproblem indices are ranked 

according to the value of the Lagrange multiplier associated with such a constraint.  The 

sequence for the next iteration of subproblems is based on this ranking.  The authors 

report two examples where the method was effective in solving a highly coupled NLP, 

but caution that experience is still limited.  The method uses the Lagrange multiplier as a 

measure of a variable partition’s effect on the entire problem and gives that method 

priority in the sequence of the subproblems. 

Sobieski [1988, 1990] proposed a method for highly coupled problems which 

makes no assumptions about separability of the objective.  Multi-disciplinary problems 

where the input-output relationships for function evaluations are defined a priori 

motivated the method.  The method can take advantage of discipline-dependent 

optimization strategies (for example, optimality criteria in structural optimization). 

Treating input as the independent variables and output as  the dependent variables for a 

given function, the implicit function theorem is used to derive the Global Sensitivity 
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Equations (GSE), (Sobieski, [1990]) which provide the derivative of the output with 

respect to the input at a constant function value.  If a given output is required as input in 

another function, the derivatives facilitate decoupling of the two functions.  The GSE 

approach decouples the constraint sets.    

 The constraint vector is partitioned into p subvectors based on physical 

subsytems and each sub-vector is represented with a single cumulative constraint.  The 

variables are partitioned based on effectiveness coefficients (Hajela and Sobieski [1981]) 

which quantify the impact of the variable on reducing the objective and each cumulative 

constraint.  Also, a pxp  matrix of ‘responsibility’ coefficients r weight the effect of the 

ith variable partition on reducing the jth   cumulative constraint violation.  For the 

feasible regions, a pxp matrix of ‘tradeoff’ coefficients t weight the effect of the 

ith variable partition on increasing the jth  cumulative constraint.  The system NLP is 

approximated with the original objective, the p cumulative constraints, and the bound 

constraints.  The ith subproblem minimizes the system objective with respect to xi subject 

to a p vector of cumulative constraints modified with a p-vector of weights defined in 

terms of r and t.  These are fixed in the subproblems.  The ‘coordination’ problem 

minimizes the system objective with respect to the coefficients r and t.  The coefficients r 

and t coordinate all subproblem coupling in the master problem.  In this context, the 

method bears resemblance to a dual method. 

Wu [1991] proposed a method for highly coupled problems which requires no 

optimization in the subproblems.  The method begins with partitioning the original 

variables into coordinating variables y and local variables x.  The local variables x are 

further partitioned into p partitions.  Partitioning by discipline (aspect decomposition) or 

by component (object decomposition) is suggested but the partitions can also be arbitrary.  

Similarly, the constraints are partitioned into p sets and the ith set of constraints is 

represented in the master problem with a single cumulative constraint, Ωi.   
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 A p-vector of multipliers α  is introduced where the scalar αi is associated with 

the ith partition of variables.  The coordinating variables are (y, α).  The master problem 

minimizes the objective with respect to  (y, α) subject to the p cumulative constraints.  A 

master problem iteration yields a vector of Lagrange multipliers, µ, associated with each 

cumulative constraint.  The local variables are represented in the master problem through 

the vector α.  At each iteration the subproblem simply computes the derivative,   

     
df
dxi   =  

∂f
∂xi   +  

∂Ω
∂xi 

T
 µ     (15) 

and the local variables are represented in the master problem as  

    xk+1
i   = xk

i   - αi 
df

dxi       (16) 

 The method has several interesting features.  It is a model reduction method; the 

cumulative constraints serve to reduce the dimensionality of the constraint set; the vector 

α  reduces the dimension of the local variable space.  Second, no optimization is done in 

the subproblems;  they only report gradient information.  Third, the derivative in 

Equation (15) is a measure of the local variable's effect on the objective and the 

derivative's magnitude and sign is used to increase or decrease the value of the local 

variable.  Fourth, the vector α  is analogous to a set of step-sizes in a line search 

algorithm.  Fifth, the method needs no move limits.  The method was evaluated with 

numerous small to medium size problems from the literature.  The accuracy of the 

solutions depend primarily on the accuracy of the cumulative constraints.  The method is 

derived on the assumption that there are no changes in constraint activity which may limit 

its generality.   

Unger et al.[1992] proposed the use of variable complexity models to decompose 

the analysis sequence in a multi-disciplinary design problem.  The problem of interest 

was the design of a transport wing for minimum weight which required both structural 

analysis and aerodynamic analysis.  The aerodynamics are modeled by vortex-lattice 

theory and the structure is described at two levels of complexity.  A simple algebraic 
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equation model of structural weight is first used in a numerical optimization procedure to 

obtain a design that approximately accounts for effects of wing geometry on structural 

weight.  The design is then refined based on a more complex finite-element model for the 

wing structure.  They demonstrate how variable level of detail in the iteration sequence 

leads to substantial savings in computational effort.  They report a 75% reduction in CPU 

time with this approach.  The method can be interpreted as a model reduction 

decomposition technique.  A function of many variables is replaced with a function of 

few; the many finite element variables are reduced to a few geometric variables and the 

required function evaluation is replaced with a simpler evaluation: an algebraic 

expression.  

5 SUMMARY   

The report reviewed and compared coordination strategies for hierarchically and 

non-hierarchically coupled optimization problems.  The coordination strategy is the 

fundamental element of a decomposition method and depends very strongly on the 

defining properties of the problem.  Figure 13 summarizes the FDT structures for most of 

the methods reviewed.  The figure illustrates the defining properties of linking functions, 

linking variables, and separability.  Moving down the figure the problem coupling 

increases. 

The coordination strategy of every method presented has an underlying generic strategy 

given in Algorithm 0.  While coupling may be non-hierarchical, the coordination 

strategies are strictly hierarchical.  A master problem coordinates the solution of the 

independent subproblems.  The algorithms in the coordination strategy take explicit 

advantage of structure (found or imposed) in the primal problem statement.  Dual 

methods accommodate linking functions by coordinating dual variables in the master 
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problem; feasible methods accommodate linking variables by coordinating them in the 

master problem; problems with linking functions and linking variables can be 

accommodated with a recursive decomposition or by incorporating a mechanism into the 

coordinating problem to account for coupling.  That mechanism may be a Lagrange 

multiplier (Pan and Diaz [1990]), a sensitivity coefficient (Sobieski [1990]) or a simpler 

model (Unger et al. [1992]).
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Figure 13. Summary of FDT structures for decomposition methods reviewed.   
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The design interpretation of the decomposition methods lies primarily in the 

authority model of the master problem.  In dual methods, the master problem is setting 

priorities with the multipliers; in feasible methods the master problem is directly 

controlling those variables common to all subproblems.  In problems with non-

hierarchical coupling, the master problem coordinates independent subproblems through 

some measure of the subproblem effects on the system.  The mechanisms vary, but 

several of the coordination strategies bear a strong resemblance to dual methods. 

The assumption throughout this report is that the defining properties for 

decomposition were known.  For the general NLP this is not easy to accomplish.  An 

undirected graph representation of the FDT coupled with specific partitioning algorithms 

facilitates identification of defining properties in the general NLP.  Wagner (1993) used a 

k-clique graph representation of the FDT and heuristics to find desired defining 

properties;  Michelena and Papalambros (1995) used a hypergraph representation and 

spectral partitioning to find optimal  defining properties.  Krishnamachari and 

Papalambros (1996) used a bipartiite graph of the FDT and integer programming to find 

optimal defining properties. 
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