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1. Introduction

Engine modeling activities at Ford have the long term goal of reducing product

development time and cost and improving product value.  By providing sufficiently accurate

simulations these models enable engineers to assess the effects of engine design variables on both

engine commodity objectives and,  with the complementary use of  the Corporate Vehicle

Simulation Program (CVSP), the effects on vehicle objectives.   Sufficiently accurate models can

be used to seek optimal designs, but to date, the methods represent an arduous task for the user.

An array of design variables is usually determined by the user and a batch file is built to run the

given model with this array of inputs.  The output is then regressed in terms of those variables and

the optimum sought by the user.  (See for example, the use of Taguchi Design of Experiments

techniques by Kenney et.al. [1989].)  This paper demonstrates the utility of incorporating

numerical optimization methods into this process.

Specific advantages result from such an approach.  The reduction of workload in  seeking

the optimum is the most obvious.  With the appropriate interface of a model to an optimization

software package the user can readily study design solutions  by changing the set of design

variables,  the design objective and constraints, and examining the effects of widening or

narrowing the constraint boundaries.

In this report, optimization techniques are used in internal combustion engine design to

obtain preliminary values for a set of combustion chamber design variables that maximize power

output per unit displacement volume while meeting specific fuel economy and packaging

constraints. Two types of mathematical optimization models are used:  an explicit algebraic model

obtained by simplifying expressions found in the Engine System Assessment program [Belaire and

Tabaczynski, 1985]  and an optimization model which uses the Engine System Assessment

program directly as a function generator.  Two combustion chamber geometries are studied with

the algebraic model, a simple flat head design and a compound valve head design.

The report is organized as follows. A brief review of the use of numerical optimization

techniques (including applications to engine design) is provided.  Next, the development of the

explicit algebraic models are presented followed by some analysis on boundedness and constraint

activity.  Relevant features of the ESA model are described next. Computational results are then

presented for both the algebraic models and the ESA program.  Lastly,  extensive parametric

studies are presented to show how changes in parameter values affect the optimal design.  

The work described here is preliminary.  The advantages of extending these techniques to

more detailed models like the Engine Simulator (ENGSIM)  and the Corporate Vehicle Simulation

Program (CVSP) should become apparent.  ESA was selected as the first model because of its ease
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of use,  its explicit algebraic expressions and its continued proliferation into the company

operations.  

2. Optimization Methods
The terms  objective, constraint, variable, parameter,  vector,  and feasible domain  have

explicit definitions given below.

The objective  is the quantity to be optimized (minimized or maximized).  It can be an

explicit algebraic function or it can be an output of  another computer program .

A (design)variable  is any quantity allowed to vary during the search for the optimum

objective.  At least the objective function or one of the constraints  should depend on  a variable;

otherwise it is  not relevant to the problem statement.  

A parameter  is any quantity appearing in the problem statement which is fixed during the

optimization.  For example, the values of the bounds appearing in the constraint set are parameters.

A constraint  bounds the set of variables in some way.  Examples are: upper and lower

bounds on variables, equality relationships among variables, upper and lower bounds on explicit

algebraic expressions relating design variables or upper and lower bounds on outputs of a model.

The set of variable values bounded by the set of constraints is called the feasible domain.

A vector  is simply a set of scalars.  The set of variables is a vector; the set of equality

constraints is a vector; the set of inequality constraints is a vector.  Also recall from multivariable

calculus that the gradient of a scalar is a vector; and that the gradient of a vector is a matrix.  

2.1 Unconstrained Optimization

The goal of optimization is to minimize or maximize a single function f, which depends on

one or more independent variables.  The value of those variables at that minimum or maximum and

the value of f  is termed the optimal solution.  The calculation of gradients in the design variable

space in search of a minimum is the essence of the algorithms of interest here.  For a

comprehensive, understandable introduction to optimization see  Chapter 10 of Numerical Recipes

- The Art  of Scientific Computing, [Press, et.al.,1987].

The classical statement of an unconstrained optimization problem is to minimize (or
maximize)  a function f which depends upon a vector, x, of  n variables where x = {x1,x2, . . . . . . ,

xn,} .  The statement of the problem for  x  is:

minimize f(x)
x = {x1,x2, ......, xn,} ε Rn ( 1 )

For a single variable problem, (x = {x}) recall from calculus that the first order necessary

condition  for a minimum is  df/dx = 0.  Also recall that the value of d2f/dx2  at this value of x
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sufficiently determines whether the function is a minimum or maximum; it is called the second

order sufficiency condition .  Similarly,  for a function of n variables the first order necessary

condition is that the gradient  of f(x) be equal to zero.  That is:

    ∂       f   = 0
∂x1

∇ f(x) =          ∂       f   = 0 (2)
∂x2
 . .

                   . .
    ∂       f   = 0
∂xn

This  results in a set of n equations that must be solved.  Newton's method is a straightforward

algorithm to solve such a set of equations.  The following steps describe the algorithm .

Step 1. Pick a starting point (a guess of the solution) x0 and set an iteration counter
       k = 0. (Superscript indicates iteration number).

Step 2. Calculate a step size,  dk, to move in x where

dk  =  -[D(∇ f(x)  )k] -1 (∇ f(x)  ) k (3)

and D(∇ f(x) )is the Jacobian of the gradient of f(x) and the Hessian of f(x).

Step 3. Calculate a new value of x using

xk+1  =  xk   +   dk (4)

Step 4. If a convergence criteria is satisfied (e.g. || xk+1  - xk || ≤ ε) stop; 
otherwise increment k by one and go to 2.

For  quadratic functions,  it can be shown that this method converges in one step from the starting
point [Dennis et al., 1989].    

2.2 Constrained Optimization

Most design problems have many constraints imposed.  For example, engine design

problems include geometric constraints on the engine package, and performance criteria constraints

on the vehicle.  The constraints can be in the form of an equality ( e.g.,  π (bore)2 x (stroke) - 4

(volume) = 0) or an inequality (e.g., (maximum piston speed) - 25m/sec ≤ 0).  Each equality

constraint equation is valued at 0 and is usually denoted by  h.  Similarly, inequalities are
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expressions set less than or equal to 0 and are denoted by g.  Table I shows a formal statement of a

constrained minimization problem .

 

Table 1. Example  of Constrained Minimization Problem

minimize f (x) (x1 + 3x2 +x3) 2 + 4(x1-x2)2
subject to:
h1(x) = 0 1-x1 - x2 - x3 = 0
g1(x) ≤ 0 3 + x13 - 4x3 - 6x2 ≤ 0                        
g2(x) ≤ 0 -x1 ≤ 0
g3(x)  ≤ 0 -x2 ≤ 0
g4(x) ≤ 0 -x3≤ 0

In shorthand the  formal statement of this problem is:

min  f(x)
subj. to :  h(x)   =  0 (5)

                g(x)   ≤  0

where h(x) = {h1(x),h2(x),...,hm(x)} is a vector of equality constraints and  g(x) =

{g1(x),g2(x),...,gl(x )} is a vector of inequality constraints.

2.2.1 The Lagrangian

A class of algorithms have been developed to solve this problem by minimizing a scalar

function  called the Lagrangian.   It is a weighted sum of the objective function and the constraints.

The weights are multipliers for each of the constraints.  There are l multipliers for the equality
constraints,    λ = ( λ1, λ2,...  λ l) and m multipliers for the inequality constraints,

µ = ( µ1, µ2,... µm).  Hence λ and µ are vectors.  The Lagrangian is written as

 

L = f(x) + ∑ l λ  i  hi(x) + ∑ m µ i  gi(x)  (6)

and the  optimization problem is stated as

minimize  L(x)
subject to:  µ ≥ 0 (7)

λ ≠ 0.

Formulation of the Lagrangian transforms a constrained minimization problem into an equivalent

unconstrained minimization problem.  
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2.2.2 The Karush-Kuhn-Tucker (KKT) Conditions

The first order necessary condition for the minimization of the Lagrangian is that the

gradient of the Lagrangian be equal to zero.  (For proof see for example, Dennis et al. [1989]).  

∇  L = ∇ f(x) +  µΤ∇ h(x)  +  λΤ ∇ g(x)  =  0T (8)

In addition, the following must hold.
λ  ≠ 0
µ ≥ 0

 λT h(x)  =  0T

µT g(x)  =  0T          (9)

These are called the Karush-Kuhn-Tucker (KKT) conditions. and constitute the first order

necessary conditions for the constrained optimization problem.  One class of algorithms to solve

this problem  is called Sequential Quadratic Programming (SQP) and is  described briefly  below.

See Papalambros and Wilde [1988] or Luenberger [1984] for a  more detailed discussion of SQP

methods.  

2.3 Sequential Quadratic Programming (SQP) Methods  

SQP methods approximate the gradient of the Lagrangian with a first order Taylor's

expansion.  This is equivalent to approximating the Lagrangian as a quadratic function.  The

constraints are approximated with a linear approximation.  An iterative algorithm to solve

∇ L(x)  =  0   

results in solving a sequence of quadratic programming subproblems; hence the name SQP.  The

solution of the quadratic subproblem yields a step direction for the next iteration in the design

space.  In addition, a line search algorithm is usually invoked to determine the best magnitude for

the direction found.

2.4 Optimal Engine Design Studies

 Optimization algorithms have been in use for some time to determine optimal control

schedules of air-fuel ratio, spark and exhaust gas recirculation as a function of speed and torque to

meet fuel and emissions requirements of the Environmental Protection Agency (EPA) driving cycle

(see for example, Auiler et al. [1978]; Rishavy et al. [1977]).   Physically based models of the

combustion process in internal combustion engines have been in use for over a decade (Blumberg

et al. [1980], Heywood [1980]; Kreiger [1980]; Reynolds [1980]) to predict the effects of relevant

design changes in combustion chamber, valve/port interface, and valve timing (Davis and

Borgnakke [1981], Davis et al. [1986, 1988];  Newman et al. [1989]).  However,  optimal designs
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are still sought primarily through arduous studies varying one variable at time. These studies

usually involve a series of hill-climbing (or descending) algorithms which are both computationally

expensive and non-convergent from the optimization viewpoint  [Kenney et al. 1989, Luenberger

1984].

Kenney et al. [1989] discuss the use of design of experiments techniques to specify the

operating conditions for a parametric study, and use the General Engine Simulator to optimize cam

event timing for improving idle stability of a 5.8L gasoline engine.  They used the same technique

to optimize cam timing for wide open throttle performance using Ford’s one-dimensional

compressible flow model of the manifold fluid dynamics (MANDY, see Chapman et al. [1982] for

model description).  Upper and lower variable bounds were the only  constraints in both problems.

Assanis and Polishak [1989] used the model of Poulos and Heywood [1983] to predict optimal

cam timing. They predicted and experimentally verified a 5% increase in peak torque.  Woodard et

al. [1988] formulated and solved a nonlinear programming problem using Campbell's model

[1979] with a general conjugate gradient method to minimize fuel consumption at a single operating

condition representing vehicle cruise.  They varied combustion chamber geometry and valve timing

and predicted a 20% reduction in fuel consumption over the existing design.  A clever technique

for accommodation of the discrete cam timing variables was also presented.   

The work described above was directed at improving existing designs using detailed

models that numerically integrate the energy equation for a full thermodynamic Otto cycle.  The

work here presents the preliminary engine design problem as a nonlinear programming problem

using a "lumped" thermodynamic model as expressed in the technical appendix for the Engine

System Assessment program [Belaire and Tabaczynski, 1985] ;  similar empiricisms can be found

in the open literature (see for example, Bishop [1964]; Taylor [1985]; Heywood [1988]).  

The utility of such a model is to obtain an expedient first order approximation to the optimal

engine configuration and the sensitivity  of the optimum  to changes in problem parameters, such

as package size and structural or manufacturability design rules.  Such analysis is essential to

efficiently allocate resources for optimal camshaft, port, piston, and valvetrain design with models

of appropriate detail.  In addition, an identical strategy, with appropriate resources, can be applied

to the execution of more complex programs such as ENGSIM and CVSP.   
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3.  The Optimization Problem Statement
The engine design problem is stated as a non-linear programming (NLP) problem in the so-

called negative null form of Equation (5).  Explicit relationships are derived for the objective

function, equality constraints, and inequality constraints.  As outlined above, f, h, and g can be

explicitly represented as functions of the design variables or implicitly as output from another

program.  Section 3.1 outlines the development of the explicit mathematical optimization models

for two combustion chamber head geometries, flat and compound valve.  Both models are

extracted from the algebraic expressions in the ESA Technical Appendix; readers familiar with ESA

can skip section 3.1 without loss of continuity.  Section 3.2 presents a monotonicity analysis

[Papalambros and Wilde, 1988] of the algebraic expressions.  Sections 3.3 - 3.5 show how the

NLP problem is formulated calling ESA as a subroutine.   

3.1 Development of the Algebraic Models 

These explicit models begin with an expression for the ideal thermal efficiency using the

basic air-cycle definition, and then adjust that to account for air-fuel effects, including exhaust gas

recirculation and combustion time losses. The resulting thermal efficiency value is further corrected

for heat transfer losses in the engine and for engine speed effects.

The optimization objective is to maximize brake power or brake power per unit engine

displacement, while meeting packaging and fuel economy constraints. The symbols used in the

models are summarized in the nomenclature, Table 2.

3.1.1 Model A - Flat Head Combustion Chamber

The assumed geometry for the flat head design is shown in Figure 1. The objective is to

maximize the brake power per unit engine displacement, BKW/V, given by  
BKW/V = K0(BMEP)w    (10)

where  K0 = 1/120 is a unit conversion constant and 

BMEP = IMEP - FMEP         (11)                

Here BMEP, IMEP, and FMEP are brake, indicated and friction mean effective pressures,

respectively, and w is revolutions per minute divided by 1000.

 The IMEP is computed from
IMEP = ηt ηv (ρQ/Af)                          (12)

where ηt is the thermal efficiency, ηv is the volumetric efficiency, ρ is the density of inlet charge,

Q is the lower heating value of fuel, and Af is the air-fuel ratio. The term (ρQ/Af) is the amount of

energy available in the air-fuel mixture per unit volume. The volumetric efficiency accounts for
flow losses and the product ηv(ρQ/Af) is the energy  per unit volume available in the mass
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inducted into the combustion chamber. The thermal efficiency accounts for the thermodynamics

associated with the Otto cycle.   

  Table 2. Nomenclature for Engine Model
 Af         air/fuel ratio
 b cylinder bore, mm
 BKW brake power, kW
 BMEP   brake mean effective pressure, kPa
 cr        compression ratio
 Cs    port discharge coefficient
 dE        exhaust valve diameter, mm
 dI       intake valve diameter, mm
 EGR      exhaust gas recirculation, percent
 FMEP   friction mean effective pressure, bars
 h     compound valve chamber deck height, mm
 H distance dome penetrates head, mm
 IMEP   indicated mean effective pressure, kPa
 isfc      indicated specific fuel consumption, g/kwh
 MAP manifold absolute pressure, kPa
 Nc    number of cylinders
 Nv    number of valves
 Q           lower heating value of fuel, kJ/kg
 r     radius of compound valve chamber curvature, mm
 s       stroke of piston, mm
 Sv         surface to volume ratio, mm-1

 V, v       displacement volume, mm3
 vc clearance volume, mm3

 vd dome volume, mm3

 Vp        mean piston speed, m/min

 w        revolutions per minute at peak power , x 10-3
 Zb        RPM factor in volumetric efficiency
 Zn       Mach Index of port/chamber design

 γ          ratio of specific heats of in-cylinder gases

 ηv         volumetric efficiency

 ηvb        base volumetric efficiency

 ηt         thermal efficiency

ηtad adiabatic thermal efficiency

 ηtw        thermal efficiency at representative part load
point (1500 rpm,  Af  = 14.6)

 ρ           density of inlet charge, kg/m3

 φ          equivalence ratio
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The volumetric efficiency can be expressed as
 ηv = ηvb (1 + Zb2)/(1 + Zn2)               (13)

where ηvb is the base volumetric efficiency, Zb is the RPM factor in volumetric efficiency, and Zn

is the Mach Index of port/chamber design. The base volumetric efficiency for a "best-in-class"

engine may be expressed empirically with a curve-fitting formula in terms of RPM at peak power,

w, as follows:
ηvb = 1.067 - 0.038 ew-5.25             for w     >     5.25

ηvb = 0.637 + 0.13w - 0.014w2  + 0.00066w3 for w ≤ 5.25  (14)

Also empirically [Taylor 1985], for a speed of sound of 353 m/sec we set
 Zb = 7.72 (10-2)w            (15)                                

 Zn = 9.428 (10-5) ws(b/dI)2 /Cs              (16)

where s is the piston stroke, b is the cylinder bore, dI is the intake valve diameter and Cs is the port

discharge coefficient, a parameter characterizing the flow losses of a particular    manifold and port

design.

    

d d

b

s

    Position at
Top Dead Center

h = s/(cr - 1)
Head Face

I E

Figure 1. Schematic of geometry for flat head design

The thermal efficiency  is expressed as
ηt = ηtad - .083 Sv(1.500/w)0.5              (17)         

where ηtad is the adiabatic thermal efficiency given by        

 ηtad  = 0.9 (1-cr(1-γ))(1.18 - 0.225φ)    for  φ    <    1

          = 0.9 (1-cr(1-γ))(1.655 - 0.7φ)      for  φ > 1 (18)

and the Sv  term accounts for  heat transfer effects due to surface/volume ration of the chamber.

Here cr is the compression ratio, γ is the ratio of specific heats of the in-cylinder gases,  and φ is

the equivalence ratio that accommodates air-fuel ratios different from stoichiometric. In the optimal
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design model  stoichiometry will be assumed, so that φ = 1 and the two expressions in Eq.(18) will

give the same result. The thermal efficiency for an ideal Otto cycle would be (1-cr(1-γ)). The 0.9

multiplier in the formulas accounts empirically for the fact that the heat release occurs over finite

time, rather than instantaneously as in an ideal cycle, and it is assumed valid for displacements on

the order of 400 to 600 cc/cylinder and bore-to-stroke ratios between 0.7 and 1.3 [Belaire and

Tabaczynski, 1985].  Heat transfer is accounted for by the product of the surface-to-volume ratio
of the cylinder,  Sv, and an RPM correction factor.  The surface-to-volume ratio is expressed  as

                    Sv = [(0.83) (12s + (cr - 1)(6b + 4s))]/[bs (3 + (cr  - 1))] (19)

for a reference speed of 1500 rpm and 4.14 bar of IMEP.

Finally the FMEP is derived with the simple assumption that the operating point of interest

will be near wide open throttle,  the point used for engine power tests, and that engine accessories

are ignored. Under these conditions pumping losses are small and ignored.  The primary factors

affecting engine  friction are compression ratio and engine speed.   An expression to reflect this is

                FMEP = (4.826)(cr  - 9.2) + (7.97 + 0.253Vp + 9.7(10-6)Vp2) (20)

where  Vp   is the mean piston speed.  More complete expressions (e.g., Bishop 1964, Patton et

al. 1989) were not employed in order to keep the monotonicity analysis of the algabraic model

tractable.   

The constraints included are packaging and efficiency  constraints.  The packaging
constraints are as follows. We chose the maximum length of the engine block to be L1 = 400 mm.

This limit constrains the bore using the practical design rule that the distance separating the

cylinders should be greater than a certain percentage of the bore dimension.  Therefore, for an in-

line engine     
K1Ncb ≤  L1                      (21)

where the constant  K1 = 1.2 for a cylinder separation of at least 20% of the bore, and Nc is the

number of cylinders in the block. Similarly, engine height limit of L2 = 200 mm constrains the

stroke:
K2s   ≤  L2                                    (22)

where K2 = 2. For a flat cylinder head, geometric and structural constraints require the intake and

exhaust valve diameters to satisfy  the  relationship  
dI +  dE  ≤  K3b              (23)

where K3 = 0.82, and the ratio of exhaust valve to inlet valve diameter is restricted as

K4  ≤  dE/dI  ≤  K5                          (24)        
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where K4 = 0.83 and K5 = 0.87. Finally, the displacement volume is a given parameter related to

design variables by
V = πNcb2s/4                      (25)

We now examine efficiency-related constraints. To preclude significant flow losses due to

compressibility of the air-fuel charge  during induction  the Mach Index of port/chamber design
must be less  than K6 = 0.6 [Taylor 1985 ]:

 Zn = 9.428 (10-5) ws(b/dI)2 /Cs  ≤  K6             (26)

Knock-limited compression ratio for 98 octane fuel can be represented by [Heywood 1988]:
cr ≤  13.2 - 0.045b                             (27)

The rated RPM at which maximum power occurs should not exceed the limits of  the torque
converter in conventional automatic transmissions, K7 = 6.5 (x1000 rpm). Therefore,

w ≤ K7.                                   (28)

Fuel economy at part load (1500 rpm , Af = 14.6) is a representative restriction on overall fuel

economy. Therefore, a constraint is imposed on the indicated specific fuel consumption, isfc, at

this part load:
isfc = 3.6 (106) (ηtw Q)-1 ≤   K8            (29)

where ηtw is the part-load thermal efficiency  and K8 = 230.5 g/kWh.                      

In order to assign parameter values, we select specifications for a 1.86L four- cylinder

engine. For this engine configuration maximizing power  density is important. The following

values are then used for the parameters.  

ρ   =  1.225 kg/m3 γ = 1.33 V  = 1.859 (106)  mm3

Q  =  43958 kJ/kg Nc =  4 Cs =  0.44 (30)

Af =  14.6

The ratio of specific heats is computed from the expression

γ = 1.33 + 0.01 (EGR/30) (31)

with zero recirculation assumed, so γ = 1.33.

The expression for thermal efficiency (and hence also fuel consumption) uses a single

multiplier to account for time losses related to flame propagation rates. The value of 0.9 in Eq.(18)

is considered valid within the limited range of bore-to-stroke ratios of

0.7 ≤ b/s ≤ 1.3 (33)

Outside this range, the geometry significantly affects flame propagation.  Presumably,  a

dependence of the multiplier on bore-to-stroke ratio could be developed and used.  This was not

done in the present model, so Eq. (33) is treated as a set constraint, not included explicitly in the
model but checked after results have been obtained.  Also note that the treatment of Cs as a
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parameter implies  Cs is independent of valve size.  This assumption requires scrutiny if Equation

(23) is not satisfied as a strict equality.

The model is now assembled after elimination of the stroke variable using the equality

constraint on displacement volume, Equation (25), and is cast into a standard NLP form, the

objective being to minimize  negative  specific power (BKW/V).

MODEL A (34)
Minimize f = K0(FMEP -  (ρQ/Af) ηtηv) w (in kW/liter)

where
ηv  =  ηvb [1 + 5.96x10-3 w2]/[1 + [(9.428x10-5(4V/πNcCs)(w/dI2)]2]

ηvb  = 1.067 - 0.038ew-5.25    for  w     >      5.25     

        =  0.637 + 0.13 w - 0.014 w2  + 0.00066w3    for  w ≤  5.25
ηt = ηtad - Sv(1.5/w)0.5

ηtad = 0.8595 (1- cr- 0.33)

Sv = (0.83) [(8 + 4cr) + 1.5(cr - 1)(πNc/V)b3]/[(2+ cr)b]

FMEP = (4.826)(cr  - 9.2) + (7.97 + 0.253 Vp + 9.7(10-6)Vp2)          

Vp   = (8V/πNc)wb-2  

subject to  
g1 = K1Ncb -  L1  ≤ 0 min bore wall thickness

g2 = (4K2V/πNcL2)1/2 - b ≤ 0 max engine height             

 g3 = dI +  dE  -  K3b ≤ 0 valve geometry and structure

g4 = K4 dI   - dE ≤ 0 min valve diameter ratio

g5 = dE - K5 dI  ≤ 0 max valve diameter ratio

g6 = (9.428)(10-5)(4V/πNc)(w/dI2) - K6Cs ≤ 0 max port/chamber Mach Index

g7 =  cr - 13.2 + 0.045 b ≤ 0 knock-limited compression ratio

g8 = w - K7 ≤ 0 max torque converter rpm

g9 = 3.6 (106) - K8Qηtw  ≤ 0 min fuel economy at part load

where  ηtw = 0.8595 (1- cr- 0.33) - Sv

This concludes the initial modeling effort for the flat head design problem. Note that there are five
design variables, b, dI, dE, cr, and w. There are nine inequality and no equality constraints,  as  all  

equalities   that   appear  in  Model  A  are   simple   definitions   of intermediate quantities

appearing in the inequalities. Significant parameters, for which numerical values were given in

Equation (30), are maintained in Model A with their symbols for easy reference in subsequent

parametric post-optimality studies. Parameter values dictated by current practice or given design
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specifications are indicated by the Ki (i = 1,..., 12) and Li ( i = 1, 2) coefficients and summarized

in Table 3.

3.1.2 Model B - Compound Valve Head Chamber Geometry

The geometry for the compound valve head design is shown in Figure 2. Accounting for

this new geometry will change Model A presented above with the addition of new design variables

and constraints. The new variables are the displacement volume v (considered a parameter in

Model A), the deck  height  h,  and  the  radius of curvature  r.  As displacement is now a variable,

the objective function is selected to be brake power rather than specific brake power.  A
relationship between clearance volume vc, displacement volume v, and compression ratio is

imposed by the definition of the compression ratio:
cr = (v/Nc + vc)/vc (35)                         

d

r

E
H

head face

Figure 2.  Schematic for compound valve design

The clearance volume is the sum of deck volume and dome volume vd.

vc =  πhb2/4 +  vd                 (36)

where
vd =  (1/3)π[(r2 - b2/4)1.5 - (r2 - dI2/4)1.5 - (r2 - dE2/4)1.5]

      -  πr2[(r2 - b2/4)0.5 - (r2 - dI2/4)0.5 - (r2 - dE2/4)0.5 ] -  (2/3)π r3    (37)  
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A typical design specification on the deck height is
h = K11b                                 (38)

where K11 = 1/64. A minimum distance of K12b must separate the two valves (Taylor 1985),

where K12  = 0.125. Geometrically this can be approximated by setting

(dI2 - H2)0.5 + (dE2 - H2)0.5  ≤ ( 1- K12) b (39)               

where H is the distance the dome penetrates the head (Figure 2) and is defined as

 H = r - (r2 - b2/4)0.5 (40)

In standard NLP form the problem of maximizing power for the compound valve head geometry

becomes

MODEL B (41)
Minimize f = K0(FMEP -  (ρQ/Af) ηtηv) wv

where
ηv  =  ηvb [1 + 5.96x10-3 w2]/[1 + [(9.428x10-5(4v/πNcNvCs)(w/dI2)]2]

ηvb  = 1.067 - 0.038ew-5.25    for  w     >      5.25     

        =  0.637 + 0.13 w - 0.014 w2  + 0.00066w3    for  w ≤  5.25
ηt = ηtad - Sv(1.5/w)0.5

ηtad = 0.9 (1- cr- 0.33))(1.18 - 0.225φ)    for φ     <     1

         = 0.9 (1- cr- 0.33)(1.655 - 0.7φ)             for  φ > 1

Sv = (0.83) [(8 + 4cr) + 1.5(cr - 1)(πNc/v)b3]/[(2+ cr)b]

FMEP = (4.826)(cr  - 9.2) + (7.97 + 0.253 Vp + 9.7(10-6)Vp2)          

Vp   = (8v/πNc)wb-2  

subject to:
h1 = cr - (v/Nc + vc)/vc  = 0 compression ratio definition

where   vc =  πhb2/4 +  vd                 

vd =  (1/3)π[(r2 - b2/4)1.5 - (r2 - dI2/4)1.5 - (r2 - dE2/4)1.5]

           - πr2[(r2 - b2/4)0.5 - (r2 - dI2/4)0.5 - (r2 - dE2/4)0.5] - (2/3)π r3              

h2 = h - K11b = 0 deck height specification

   g1 = K1Ncb -  L1  ≤ 0 min bore wall thickness

g2 = (4K2v/πNcL2)1/2 - b ≤ 0 max engine height             

 g3 = (dI2 - H2)0.5 + (dE2 - H2)0.5 - K3cb ≤ 0 min valve distance

where H = r - (r2 - b2/4)0.5

g4 = K4 dI   - dE ≤ 0 min valve diameter ratio

g5 = dE - K5 dI  ≤ 0 max valve diameter ratio

g6 = (9.428)(10-5)(4v/πNc)(w/dI2) - K6Cs ≤ 0 max port/chamber Mach Index
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g7 =  cr - 13.2 + 0.045 b ≤ 0  knock-limited compression ratio

g8 = w - K7 ≤ 0 max torque converter rpm

g9 = 3.6 (106) - K8Qηtw  ≤ 0 min fuel economy at part load

where  ηtw = 0.8595 (1- cr- 0.33) - Sv
g10  = v -  K9 ≤ 0

g11  = - v + K10  ≤  0

The empirical parameters have the same values as in Model A  in addition to K3c = 1 - K12 =

0.875, K9 = 1.6(106), K10 = 2.3(106). There are two equality constraints (h1 and h2) added to

this model.  In principle, one design variable can be eliminated for each equality (e.g. cr, and h).

However, this creates an algebraic nightmare for the other contraints, so no model reduction will

be attempted using the equality constraints. Constraint g3 has been rewritten and two additional

inequalities, g10 and g11, have been added to provide upper and lower bounds on the displacement

volume.

Table 3. Current Practice or Design Specification Parameters

PARAMETER

K0
K1
K2
K3
K4
K5
K6
K7
K8
K9

  K10
  K11
  K12

L1
L2

VALUE

1/120

1.2

2

0.82

0.83

0.89

0.6

6.5

230.5 g/kWh

2.3 (106)mm3

1.6 (106)mm3

1/64

0.125

400 mm

200 mm

SPECIFICATION

unit conversion, 4 stroke engine

cylinder separation as % of bore

engine height as a multiple of stroke

valve spacing as % of bore (flat head)

lower bound on valve ratio

upper bound on valve ratio

upper bound on Mach Index

upper bound on rpm

upper bound on isfc

upper bound on displacement volume

lower bound on displacement volume

bore fraction specification for deck height

bore fraction specification for valve distance

upper bound on engine block length

upper bound on engine block height
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3.2 Monotonicity Analysis 

In many design models, the objective and constraint functions are monotonic  with respect

to the design variables.  A continous differentiable function f(x) is monotonically increasing  with
respect to (wrt) a design variable xi, if  ∂f/∂xi > 0; it is monotonically decreasing  wrt a design

variable xi, if  ∂f/∂xi < 0.  Under either condition, we say that f is coordinate-wise monotonic wrt

xi, or that xi is a monotonic variable in f.  Monotonicity analysis is a model analysis methodology

that checks whether a model is properly bounded and identifies active constraints when possible.

Active inequality constraints must be satisfied as strict equalities at the optimum and they

correspond to critical design requirements. See Papalambros and Wilde (1988) for further details.

We start monotonicity analysis of Model A by identifying any monotonicities in the model

functions. Examining the model  we observe the following.

FMEP = FMEP(cr , Vp+(w+, b-)) = FMEP(cr, w+, b-)

ηt = ηt(cr+, Sv
-(cr,  b+)) = ηt(cr, b-) (42)

ηv = ηv(w, dI
+)

In Equation (42) the right hand side shows how the functions on the left depend on the design

variables. A superscript sign indicates the type of monotonicity that may exist, positive (or

negative) indicating that the function is increasing (or decreasing) wrt to that variable; no sign

indicates that the variable has undetermined monotonicity. All monotonicities above are easy to

verify except  that wrt b. Although the proof is omitted here, it is worth noting that it is a regional

monotonicity, namely, valid only for the range of design variable values within the feasible

domain.

 The monotonicities of Model A can be now presented as follows.

MODEL A1 (43)

min f(cr, w, b, dI
- ) = K0w [FMEP(cr, w+, b-) - P0 ηt(cr, b-) ηv(w, dI

+)]

subject to

g1(b+) = b -  P1  ≤ 0 min bore wall thickness

g2(b-)  = P2 - b ≤ 0 max engine height             

 g3(b-, dE+, dI
+) = dI +  dE  -  K3 b ≤ 0 valve geometry and structure

g4(dE-, dI
+)  = K4 dI   - dE ≤ 0 min valve diameter ratio

g5(dE+, dI
-)  = dE - K5 dI  ≤ 0 max valve diameter ratio

g6(w+, dI
-) = P3w - dI2 ≤ 0 max port/chamber Mach Index
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g7(cr+, b+) =  cr - 13.2 + 0.045 b ≤ 0 knock-limited compression ratio

g8(w+) = w - K7 ≤ 0 max torque converter rpm

g9(cr, b+) = P4 - 0.8595(1- cr- 0.33) + Sv(cr, b+) ≤ 0 min fuel economy at part load

  

Note that in this new model all known monotonicities are indicated and several parametric relations
Pi have been introduced to simplify the presentation of the model. These are given in Table 4, the

numerical values corresponding to parameter values for the base case. We now proceed with

representing this information in a monotonicity table, as shown in Table 5.

Table 4. Parametric Functions for Model A

P0 = ρQ/Af  = 3688 kPa

P1 = L1/K1Nc = 83.33 mm

P2 = (4K2V/πNcL2)1/2 = 76.90 mm

P3 = 9.428x10-5 (4V/πNc)/(K6Cs) = 215.5 mm2sec

P4 = 3.6(106)/K8Q = .3412

Table 5. Monotonicity Table for Model A1

cr w b dE dI

f U U U -
g1 +
g2 -
g3 - + +
g4 - +
g5 + -
g6 + -
g7 + -
g8 +
g9 U +
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In the monotonicity table the columns are the design variables and the rows are the

objective and constraint functions, the entries in the table being the monotonicities of each function

with respect to each variable.  Positive (negative) sign indicates increasing (decreasing) function, U

indicates undetermined or unknown monotonicity.  An empty entry indicates that the function does

not depend on the respective variable, so the table acts also as an incidence table.

The Monotonicity Principles can be more readily applied using the monotonicity table.

These principles state the following (Papalambros and Wilde 1988):

First Monotonicity Principle (MP1):  In a well-constrained objective function every increasing

(decreasing) variable is bounded below (above) by at least one active constraint.

Second Monotonicity Principle(MP2):  Every monotonic variable not occurring in a well-

constrained objective function is either irrelevant and can be deleted from the problem together with

all constraints in which it occurs, or is relevant and bounded by two active constraints, one from

above and one from below.

Based on these principles and Table 5 the following conclusions are reached. By MP1 wrt
dI at least one of g3 or g4 must be active. We examine these two cases. (i) If g3 is active,  then by

MP2 wrt dE g4 must be active as well. (ii) If g4 is active, then by MP2  wrt  dE g3 and/or g5 must

be active. But g5 and g4 cannot be simultaneously active because they represent upper and lower

bounds on the same quantity. Therefore in case (ii) g4 must be active also. We see that in either

case, both g3 and g4 must be active at the optimum. This is a necessary optimality condition that

must be satisfied by any subsequent numerical results.  Solving for dE and dI in terms of the

optimal value b*
  (asterisk denotes optimal value) we get

dE* = b*K3K4/(1+K4)

dI* = b*K3/(1+K4) (44)

a solution that is acceptable provided K4 ≤ K5. Note that g5 is then inactive. Using the second of

Equation (44) to eliminate dI from the objective and remaining constraints Model A1 is now

reduced to

MODEL A2 (45)
min f(cr, w, b) = K0w [FMEP(cr, w+, b-) - P0 ηt(cr, b-) ηv(w, b+)]

subject to

g1(b+) = b -  P1  ≤ 0 min bore wall thickness

g2(b-)  = P2 - b ≤ 0 max engine height             

 g6(w+, b-) = P3w - [K3/(1+K4)]2b2 ≤ 0 max port/chamber Mach Index

g7(cr+, b+) =  cr - 13.2 + 0.045 b ≤ 0 knock-limited compression ratio
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g8(w+) = w - K7 ≤ 0 max torque converter rpm

g9(cr, b+) = P4 - 0.8595(1- cr- 0.33) + Sv(cr, b+) ≤ 0

min fuel economy at part load

where asterisks are dropped for convenience. There are only three design variables left and at most

three constraints from the six in Model A2 can be active.

We proceed with monotonicity analysis for Model B. We now have

FMEP = FMEP(cr , Vp+(w+, b-, v+)) = FMEP(cr, w+, b-, v+)

ηt = ηt(cr+, Sv
-(cr,  b+, v-)) = ηt(cr, b-, v+) (46)

ηv = ηv(w, dI
+, v-)

vd = vd(b, dI
-, dE

-,  r)

The algebraic expression for vd in Equation (37) is not easy to use for proving the monotonicities

wrt dI and dE indicated above, but the geometry in Figure 2 shows that this is evidently the case.

Eliminating variable h and constraint h2 we get

MODEL B1 (47)

min f(cr, w, b, dI
-, v) = K0wv [FMEP(cr, w+, b-, v+) 

- P0 ηt(cr, b-, v+) ηv(w, dI
+, v-)]

subject to

h1(cr+, v-, vc-) = - 1 + cr - (v /Ncvc) = 0 head geometry

where vc =  πK11b3/4 +  vd(b, dI
-, dE

-,  r)  

g1(b+) = b -  P1  ≤ 0 min bore wall thickness

g2(b-, v+)  = P2C v1/2 - b ≤ 0 max engine height             

 g3(b, dE+, dI
+,  r) ≤ 0 valve geometry and structure

g4(dE-, dI
+)  = K4 dI   - dE ≤ 0 min valve diameter ratio

g5(dE+, dI
-)  = dE - K5 dI  ≤ 0 max valve diameter ratio

g6(w+, dI
-, v+) = P3Cwv - dI2 ≤ 0 max port/chamber Mach Index

g7(cr+, b+) =  cr - 13.2 + 0.045 b ≤ 0 knock-limited compression ratio

g8(w+) = w - K7 ≤ 0 max torque converter rpm

g9(cr,b+,v+)=P4 - 0.8595(1- cr- 0.33)+Sv(cr,b+,v+) ≤0  

min fuel economy at part load
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g10(v+) ≤ 0

g11(v-) ≤ 0     

where the revised parametric functions are

P2C = (4K2/πNcL2)1/2  P3C = (9.428)(10-5)(4/πNc)/ (K6Cs).      (48)

Consider the implicit function h1(cr+, v-, b, dI
+, dE

+, r) = 0 defined by the equality

constraint. If we use it to solve implicitly for dE we get dE = φ1(cr-, v+, b, dI
-, r) based on the

implicit function theorem (Papalambros and Wilde 1988). Eliminating dE implicitly from Model B1

we get the same model functions except that h1 is not present and g3, g4, g5 are replaced by

   g3'(b, dI,  cr+, v-, r) ≤ 0

g4'(dI
+ , cr+, v-, b, r)  ≤ 0

g5'(dI
-, cr-, v+, b, r) ≤ 0      (49)

By MP1 wrt dI at least one of g3' or g4' must be active, while by MP2 wrt r at least two of the

above three constraints must be active. Since g4' and g5' cannot be simultaneously active g3 is

definitely active, but it cannot be concluded at this point that both g3 and g4 must be active as in the

case for flat heads. However, the problem has now one less variable and one less constraint.  This

completes the model analysis and the analytical results will be highlighted in the context of the

numerical results.  

3.3 The Optimizer NLPQL (NCONF).

The NLPQL algorithm (Schittkowski, 1986) is available as a subroutine in the International

Mathematical and Statistical  Library (IMSL) [IMSL 1991] under the names NCONF and

NCONG.  It has been designed to solve the general nonlinear programming problem :      

min f(x)
subject to: gj(x) = 0   j=1,...,me

gj(x) ≥ 0   j=me +1, ...., m (50)
xl ≤ x ≤ xu

Note the change in notation from Section 2 for the name of the equality constraint set and for the

sign on the inequality constraint set.  Also, note that variable bounds are specified separately from

the constraint set.  These changes are noted only to be consistent with the reference manuals on the

algorithm.  

It is assumed that all problem functions are continuously differentiable.  The NLPQL

algorithm realizes a sequential quadratic programming method, also called recursive quadratic
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programming,  constrained variable metric,  or the algorithm of Powell [1978].  In each iteration a

quadratic programming subproblem is formulated by linearizing the constraints and approximating

the corresponding Lagrange function quadratically.  A new iterate is calculated then by minimizing

a so-called merit or penalty function along the search direction obtained from the subproblem.  The

Hessian matrix of the Lagrange function is approximated by the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method. (See Papalambros and Wilde, [1988] p. 340 for a description of the

BFGS method.)  

The main program that calls NCONF must contain an array of design variables,  upper and

lower bounds on those variables, and subroutines NLFUNC and NLGRAD.  NLFUNC calculates

and returns the values of objective function and constraints at given variable values.  NLGRAD

calculates the gradient of the objective function and constraints with respect to the design variables

using a forward difference approximation of the partial derivative.  NLGRAD calls NLFUNC for

the forward difference calculation.  Subroutines that calculate the gradient using other methods

(including the analytical derivative if available) can be used in place of  NLGRAD.  

3.4 Engine System Assessment Model

The Engine System Assessment (ESA) program contains more comprehensive expressions

than the analytical models given above.  For example, it implements the friction model given by

Patton et al. [1989].  Input engine geometry is described by 72 quantities, ten of which have

continuous values; the remaining values are discrete and reflect specific design configurations.

Examples of discrete-valued quantities are the number of cylinders, number of piston rings, and

multipliers that reflect specific component types such as a roller finger follower valvetrain. Outputs

include a measure of WOT performance (volumetric efficiency or torque) as a function of engine

speed,  analogous to the base volumetric efficiency curve in the analytical model, as well as the

other engine performance quantities used in the analytical models above.

3.5 The ESA-NLPQL Interface

Coupling  ESA and NCONF requires a means to pass variable values to ESA,  call ESA

from NCONF, and access ESA output.  Three keys to the coupling are the ability to run ESA with

a batch file, a 400 element array in ESA that contains all input and output data, and the use of a

single file called the problem definition file ('prob.def').  Appendix A shows the file contents with

descriptions.  Figure 3 shows a schematic of the interface and data flow through the various

subroutines.  The main program performs three functions: it reads the problem definition file using

a subroutine called LOADPROB; it initializes the variables and sets bounds based on the contents

of 'prob.def'; and it invokes the optimizer subroutine NCONF once.  NCONF invokes calls to

NLFUNC to perform function evaluations and gradient evaluations.  NCONF is the only

subroutine that  invokes ESA.  This is  accomplished by calling WRITE_INPUT to build a batch
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file to run ESA with the appropriate variable values; invoking a shell script to run ESA; and then

reading the contents of the 400 element array stored in 'dump.tmp'.  The  objective function and

constraints are evaluated with the relevant contents of the array.

The design optimization model that uses ESA as the underlying analysis model is identical

to Model A with several exceptions.  ESA serves now as an implicit function generator for the

NLPQL optimizer.  ESA is capable of providing peak power and RPM of peak power as output.

This feature is exploited to minimize computational time during optimization iterations.  The
variable w (RPM) still appears in constraint g8 but only as an implicit function of the other four

design variables.  

Batch file 

geometry file name
variable changes
flags
manifold file name

ESA

'dump.tmp'

Process  invoked by shell script 'RUN_ESA'

CALL LOADPROB
Initialize bounds on variables
CALL NCONF

NLFUNC
   CALL WRITE_INPUT
  Invoke script 'RUN_ESA'
  CALL READ_DUMP
   Assign objective and constraints

GRAD
  Increment variables
  CALL NLFUNC

MAIN

WRITE_INPUT
  Open 'in.tmp'
  Write file names, variables, flags
  to in.tmp
  Close 'in.tmp'

READ_DUMP  
  Open dump.tmp
  Read file into B array
 

LOADPROB  
  Open and read prob.def

prob.def

Text Key

- Description of actions
- SUBROUTINE NAME
- SUBROUTINE CALL

(0,0)

(20,20)

Figure 3. Schematic of ESA/NCONF interface.
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The problem statement  presented to the optimizer is as follows:

MODEL C (51)
Minimize BKW/V = f1esa(b, dI, dE, cr; Af = 13.5, MAP = 99.63 kPa)  (in kW/liter)

subject to   
g1 = K1Ncb -  L1  ≤ 0 min bore wall thickness

g2 = (4K2V/πNcL2)1/2 - b ≤ 0 max engine height             

 g3 = dI +  dE  -  K3b ≤ 0 valve geometry and structure

g4 = K4 dI   - dE ≤ 0 min valve diameter ratio

g5 = dE - K5 dI  ≤ 0 max valve diameter ratio

g6 = (9.428)(10-5)(4V/πNc)(w/dI2) - K6Cs ≤ 0 max port/chamber Mach Index

g7 =  cr - 13.2 + 0.045 b ≤ 0 knock-limited compression ratio

g8 = wesa (f1esa) - K7 ≤ 0 max torque converter rpm

g9 = (isfc)esa - K8 ≤ 0 min fuel economy at part load

where      

(isfc)esa  = f2esa(cr, b; Af = 14.6, BMEP = 262 kPa, RPM = 1500, EGR = 0% )

The implicit function f1esa  is a subroutine call that builds the ESA input files, invokes the  ESA

program at WOT conditions, and extracts the peak power density and the w at peak power from the
available output.  The implicit function f2esa  is a subroutine call similar to f1esa that runs tthe ESA

program at the part throttle condition and extracts the specific fuel consumption from the outputs.

The variables in this functions and parameter value settings used are indicated in the model above.

Note that ESA is called twice for each function call made by NLPQL.

4. Computational Results and Parametric Studies

 Subroutine NLPQL was used to solve Models  A1, B1, and C numerically. Post-optimal

parametric studies were performed to examine the sensitivity of the optimal solution with respect to

some key parameter values. Only some parametric results are presented below. Many different

combinations of parameters can be examined, as long as the model validity assumptions are not

violated.

Note that as NLPQL is capable of identifying only local solutions that satisfy the Karush-

Kuhn-Tucker (KKT) first-order optimality conditions, it is possible that the solutions indicated are

saddlepoints rather than minima. However, the preceding model analysis that led to constraint

activity identification is a strong safeguard against this possibility.
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4.1 Optimal Designs: Models A1, B1, and C

Results for the "base case" of parameter values indicated in Tables 3 and 4 are presented

first. For flat head geometry Table 6 shows initial and final (optimal) values obtained by NLPQL

after twenty iterations.  The iteration history is shown in Figure 4, as a typical example of the

search pursued by the optimizer. Note that an SQP method will obtain intermediate infeasible

results as part of its strategy.

Table 6. Flat Head Geometry Results

Power
Density

f  (kW/l)

Bore

b  (mm)

Intake
Valve

Diameter
dI  (mm)

Exhaust
Valve

Diameter
dE  (mm)

Compression
Ratio

cr

RPM

w*1000

Starting Point 50.02 82.0 39.0 34.0 8.42 5000

Final  Point 60.7 83.3 40.5 33.6 9.45 6230

Some observations on these results are as follows.  At the initial design the value of RPM

is not that of peak power and the value of cr is not the knock-limited compression ratio. The active
constraints for the final design are the upper bound on bore wall thickness g1, the geometric

relationship between valves and bore g3,  the minimum valve diameter ratio g4, and the knock-

limited compression ratio g7.  Activities for g3 and g4 were proven by monotonicity analysis.   For

the initial geometry, w = 6.13 (6130 rpm) and f = 55.52 kW/l  at the peak power point.  The

optimal design increases peak power to 60.7 kW/l at 6230 rpm; a 9.3 % improvement.  The

activity of the knock-limited compression ratio accounts for about half of the increase.  The

remainder of the increase is attributable to increased flow area (larger bore) and increased engine

speed (shorter stroke).  

Results for the compound valve geometry are shown in Table 7 and Table 8.  For the

results in Table 7, the displacement is a parameter (fixed)  and the objective is again maximum

power density.  The constraints on minimum bore wall thickness (g1), maximum engine height

(g2) , and the knock limited compression ratio (g7) are active.  The compound valve head results in

a larger valve size, which results in higher predicted peak power.  

Typically, power density is chosen as an objective because of the assumption that

displacement volume scales with package constraint.  However, if the package constraints can be
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specified explicitly for the engine problem, this assumption is not required and displacement

volume can be treated as a variable.  Then, net power, not net power density is a more appropriate

objective function.  Model B was rerun with displacement volume as a variable to illustrate this

effect.  The result is shown in Table 8.  The optimal power density  is  reduced to 61.5 kW/l;  the

net power for the package  improved by  10% over the optimal design in Table 7.  Clearly,  power

per package displacement is a more appropriate objective function than power per engine  

displacement.   

Table 7.  Compound Valve Head Results (constant volume)

Power
Density

f  (kW/l)

Bore

b  (mm)

Inlet
Valve

Diameter
dI  (mm)

Exhaust
Valve

Diameter
dE  (mm)

Head
Radius

r  (mm)

RPM

w*1000

Displacement
Volume

(constant)
v  (l)

Starting Point 54.94 82.0 39.0 34.0 50.0 5000 1.859

Final  Point 65.6 83.3 46.44 37.0 56.5 6240 1.859

Table 8. Compound Valve Geometry Results (Variable Volume)

Power

f  (kW)

Bore

b  (mm)

Inlet
Valve

Diameter
dI  (mm)

Exhaust
Valve

Diameter
dE  (mm)

Head
Radius

r(mm)

RPM

w*1000

Displacement
Volume

v  (l)

Starting Point 117 82.0 39.0 34.0 50.0 5000 1.859

Final Point 134 83.3 46.44 38.5 50.8 6240 2.180

The initial results obtained with the implicit ESA model are shown in Table 9. NLPQL

found a convergent solution to this problem in three iterations.  The active constraints are the bore
wall thickness g1, the geometric relationship between valves and bore g3,  the minimum valve

diameter ratio g4, and the knock-limited compression ratio g7. For the starting design, w = 4.8

(4800 rpm) and f = 38.4 kW/l at the peak power point.  The constraint activity was identical to the

results for MODEL A1.  The differences in the solutions are the optimal values of f and w.  The

absence of significant elements of the friction expression in Model A1 accounts for the difference

in objective function.  The difference in base volumetric efficiency curves between Model A1 and

Model C accounts for the differences in w.  Model C used an experimentally measured volumetric

efficiency with w = 4.0 (4000 rpm); the base volumetric efficiency curve for Model A1 peaks at w

=  5.25 (5250) rpm.  The optimal design obtained using Model C increases peak power relative to
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the baseline by 11.5 %.  Again, the activity of the knock-limited compression ratio accounts for

about half of the increase and the remainder is attributable to increased flow area (larger bore) and

increased engine speed (shorter stroke).  

Table 9.  ESA -based Results

Power
Density

f  (kW/l)

Bore

b  (mm)

Inlet
Valve

Diameter
dI  (mm)

Exhaust
Valve

Diameter
dE  (mm)

Compression
Ratio

cr

RPM

w*1000

Starting Point 36.67 82.0 39.0 34.0 8.42 5000

Final Point 40.9 83.3 40.5 33.6 9.45 5200

4.2 Sensitivity of Optimal Designs to Constraint Parameters

We now examine the effect of changing parameter values on the optimal solutions.  For flat
head chamber design (Model A1), parameter P1 appearing in constraint g1 contains the effect of

limiting engine length and the structural design rule for minimum cylinder wall thickness.   A
family of optimal designs, generated by varying P1 between 83.33 mm and 100.0 mm, is shown

in  Figure 5.  These values can be attained by changing L1, K1, or both.  The fuel constraint g9

becomes active when P1 = 92.67 mm; however, this corresponds to a bore-to-stroke ratio greater

than 1.3 which is considered outside the validity domain of the model.  Within the valid domain,
the dependence of f* with respect to P1 is nearly linear, and the sensitivity, df*/dP1 = 0.72 kW/l

per mm.  Physically this means a  1% relaxation of the package length or a 1% relaxation of the

minimum bore wall thickness results in a potential 1% increase in peak power.  Therefore this

constraint should be chosen judiciously.

The variation of the solution with respect to the constraint on isfc at the world-wide
mapping point (K8)  was also examined.  The value of P1 = 83.33 mm imposes a very small

feasible domain, so P1 was relaxed to 90.91 mm (K1 was set to 1.1) and K8 was varied between

219 and 242 g/kWh (i.e.,     +     5% of the base value).  The sensitivity of the optimal design to this
upper bound is shown in Figure 6.   For K8 > 228.8 g/kW-hr, the constraint  g9 is satisfied as an

inequality (it is inactive) and the solution does not change with K8.  For K8 between 219 and

228.8 g/kW-hr, the solution changes.  The dependence of the design on K8 is represented as a
second order polynomial fit of f*(K8).  To first order, the sensitivity of f* wrt  K8 is 1.35 kW/l

per g/kWh.  This roughly translates to 4% decrease in peak power per 1% decrease in specific fuel

consumption.  
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Figure 5.  Optimal Design for Algebraic Flat Head Model (A1) as a Function of  Upper Bound on    
     Package Length - P1 (mm) (K3 = 0.82; K8 = 230.5 g/kW-hr).
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Figure 6.   Optimal Design for Algebraic Flat Head Model (A1) as a Function of  Upper

Bound on  ISFC - K8 (g/kW-hr). (K3 = .82;  P1 = 90.91 mm).
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Figure 7.  Optimal Design for Algebraic Flat Head Model (A1) as a Function of Upper Bound on  

Total Valve /Bore Ratio (K8 = 230.5 g/kW-hr; P1 = 90.91 mm).
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Parameter K3, which reflects the geometric relationship between the valves and the bore,

was also varied to generate a family of optimal designs as shown in Figure 7.  No change in
constraint activity was observed over the parameter range.  The relationship between f* and K3 is

nearly linear.  This constraint should also be chosen very judiciously, because the sensitivity
df*/dK3 = 6 kW/l  implies that a 1% change in K3 is roughly equivalent to a 1% change in optimal

net power.

Identical parametric studies were conducted using Model C.  These results are summarized

in Figures 8, 9, and 10.  Figure 8 shows the variation of the optimal design with the package
length  P1(mm).  The fuel constraint becomes active at P1 = 93.78 mm (not shown) which is

beyond the validity of the model  (b/s > 1.3).   The sensitivity df*/dP1 = 0.4 kW/l per mm implies

that a 2% increase in package length can yield a 1% increase in peak power.  

The lower sensitivity (relative to Model A1) is due to the lower absolute values of f*, a

direct result of the more complete friction model in Model C (the ESA program).  Figure 9 shows

the variation of optimal designs predicted by Model C with respect to the upper bound on the isfc

constraint, K8 (with P1 = 90.91).  The fuel consumption constraint, g9 becomes active at K8 =

228 g/kW-hr. The sensitivity of f* with respect to K8 says that roughly to a 1% improvement in

specific fuel (1% decrease in K8) results in a 4.5% decrease in peak power.  

Figure 10 shows the variation of optimal peak power with the ratio of valve size to bore,

K3.  The parameter K3 had no effect on constraint activity over the range investigated; hence, only

the optimal values of valve sizes varied linearly with K3.  A 1% increase in the ratio K3 results in a

1% increase peak power in the optimal design.

The utility of the approach presented is not that it provides a single  solution but,  that, once

the optimal design problem is cast, it yields a family of design solutions with quantitative

assessments of design compromise.  For example, the results in Figure 8  show that allowing an

increase in block length of 4 mm may result in  a potential gain of 0.5% power.  Such information

is essential for good synthesized design.  Similarly, Figure 9 illustrates that a 1% improvement in

part load fuel consumption requires giving up 4% in power.  The trade-off between fuel

consumption and power is qualitatively intuitive; this approach also yields a quantitative

assessment.
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Figure 8. Variation of ESA Based Optimal Design (Model C) as a Function of 

   Upper Bound  on Package Length - P1 (mm) (K3 = 0.82 ; K8 = 230.5 g/kW-hr).   
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Figure 9. Variation of ESA Based Optimal Design (Model C) as a Function of 

    Upper Bound on ISFC - K8 (g/kW-hr) (K3 = 0.82;  P1 = 90.91 mm).   
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Figure 10. Variation of ESA Based Optimal Design (Model C) as a Function of 

Upper Bound on Total Valve/Bore Ratio - K3 (K8 = 230.5 g/kW-hr); P1 = 90.91 mm).   

CONCLUSIONS

Monotonicity analysis and a sequential quadratic programming algorithm produced

predictions of the optimal combustion chamber geometry  using three engine models of increasing

complexity.  The models produced similar trends but different values of objective function, which

affected constraint activity.   The predictions indicate that a maximum bore/stroke ratio is required

for maximum power/liter for a fixed displacement engine.  In this problem formulation, the

maximum bore was determined by the activity of either the package constraint or the fuel

consumption constraint.

The increased bore size results in increased flow area per unit displacement and reduced

stroke.  This in turn has the effect of shifting the peak of the power curve to higher speeds at

comparable torques and it results in higher peak power.  Realizing the benefits of this increased

power in a vehicle may require redesign of a transmission.   In fact, current design practice tends to

place substantially tighter bounds on the speed of peak power simply because of transmission

design change costs.

Clearly,  numerous design scenarios can be studied.  Fuel consumption could be treated as

an objective, and power as a constraint.  Additional constraints representing emissions could (and

should) be formulated to generate more representative design rules.  This paper has demonstrated

the advantages of coupling a numerical optimization scheme to an existing engine model program.  

The utility of such an approach with more complex models like ENGSIM is apparent.

Since NLQPL and similar algorithms require the objective function and constraints to be
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differentiable,  an algebraic representation of ENGSIM output is desirable.  A possible approach is

to use the algebraic equations generated by Kenney's method [1989] to solve a reasonably difficult

design problem.  Currently, a ten variable problem  that relies on ENGSIM output is considered

difficult.  This approach will be explored and should be useful for studying solutions to current

engine design problems.       
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APPENDIX A
Table AI - Contents of Problem Definition  File 'prob.def'.

'prob.def' contents Data Structure Description

3
1
3
bore
stroke
valdii(1)
82., 100., 70.
88., 100., 70.
39., 50., 30.,
3
bhp/l   7   4
isfc     20   8
bsfc    20   18

NV
NE
NC
XDESC(1)
XDESC(2)
XDESC(3)
XINIT(1),  BOULOW(1), BOUUPP(1)
XINIT(2),  BOULOW(2), BOUUPP(2)
XINIT(3),  BOULOW(3), BOUUPP(3)
NO
XDESC(1)
XDESC(2)
XDESC(3)

Number of variables
Number of equality constraints
NE plus and total number of inequality constrai
Character descriptors used to build run file
for changing each variable in ESA.

Initial value, upper and lower bound of  X1
Initial value, upper and lower bound of  X2
Initial value, upper and lower bound of  X3
Number of model outputs to use.
Output descriptor, indices for output  
in 400 element array.


