Rapport de Travail de Fin d’Etude
Master Degree Thesis

Optimal Design Laboratory,
University of Michigan
10/04/06 – 08/09/06

Tuteurs/Advisors :
Panos Y. Papalambros, University of Michigan
Jean-François Petiot, Ecole Centrale Nantes

Pierre Maheut, Centrale Nantes, Promo 2006
Option Disciplinaire: Développement de Produit et de Systèmes Industriels (DPSI)
Major: Product Design and Industrial Systems
Filière : Développement de Produits et Industrialisation (DPI)
Specialization: Product Design

Option Professionnelle : Design Industriel, Marketing, Innovation (DINI)
Minor: Industrial Design, Marketing and Innovation
ABSTRACT

Capturing Aesthetic Preference in Product Design

By

Pierre Maheut

Chair:
Panos Y. Papalambros, University of Michigan
Jean-François Petiot, Ecole Centrale Nantes

Product design optimization usually does not take the user’s aesthetic assessment into account because aesthetic preference is not well captured using today’s tools. Several models have been developed that attempt to determine user preference but even if the user is directly asked about preference it is still a passive process. By using Interactive Genetic Algorithms (IGA), the methodology developed by Jarod Kelly, Ph.D. candidate at University of Michigan, allows a user to find his own “optimal product design” by going through an interactive survey that follows his preference assessments.

In this paper, the early steps of this new methodology are presented along with tests of the methodology alone and against the quadratic preference model, which is another preference tool. In this paper the early results of the study will be discussed along with the expected results of the full study. The following key steps of the study will also be presented.

Keywords: Interactive Genetic Algorithm (IGA), Aesthetic, Product Design, Quadratic Preference Model, Preference modeling, Optimal Design.
INTRODUCTION

Work towards the attainment of my master degree was conducted during a final internship from April 10th to September 8th 2006 at the Optimal Design Laboratory (ODE), University of Michigan under the supervision of Panos Y. Papalambros. It constituted the final work of my study in engineering at the Ecole Centrale Nantes, major: Product Design & Industrial Systems Development and minor: Industrial Design, Marketing & Innovation. Jean-Francois Petiot, HDR/Associate Professor, responsible for the courses: Product Design and Industrial Systems and Industrial Design, Marketing and Innovation, was my advisor at Centrale Nantes on this project.

This work was done in association with Jarod Kelly, a Ph.D. student at UM, on the project entitled: ‘Visual Aesthetic Preference Assessment in Optimal Product Design’.

ACKNOWLEDGEMENTS

First, I would like to thank Panos Y. Papalambros and the Optimal Design Lab team to welcoming me into the team and supporting me throughout my internship.

I would like to particularly thank Jarod Kelly, the Ph.D. Student I worked with on the “Visual Aesthetic Preference Assessment in Optimal Product Design” project. Jarod has been an excellent partner and I learned a lot from him.

I also would like to thank Richard Gonzalez and Laith Alattar from the Department of Psychology, who helped Jarod and me on the psychological aspect of the study.

Finally, I would like to thank my supervisor Jean-Francois Petiot who helped me find the opportunity to do my internship at the ODE Lab of the University of Michigan and for his management and support during the internship.
TABLE OF CONTENTS

1. **AIMS** .. 5

2. **ACTUAL TOOLS TO OBTAIN THE USER’S PREFERENCE** 6
 2.1. *EXAMINATION OF ACTUAL MODELS AND METHODS TO GET USERS PREFERENCE* 6
 2.2. *QUADRATIC MODEL OF PREFERENCE (QPM) [PETIOT & CHABLAT, 2003]* 14

3. **METHODOLOGY BASED ON INTERACTIVE GENETIC ALGORITHM..** 16
 3.1. *INTERACTIVE GENETIC ALGORITHM APPLIED TO PRODUCT DESIGN* 16
 3.2. *TUNING OF INTERACTIVE GENETIC ALGORITHM: MONTE-CARLO SIMULATION* 27

4. **PILOT SURVEY** .. 34
 4.1. *PRESENTATION* ... 34
 4.2. *CONTENT [APPENDIX B]* .. 34
 4.3. *SURVEY PROCEDURE TEST* .. 34
 4.4. *COLLECTED INFORMATION* .. 36
 4.5. *RESULTS AND ANALYSIS [APPENDIX C & D]* ... 42

5. **JUST NOTICEABLE DIFFERENCE (JND)** .. 56
 5.1. *PRESENTATION* ... 56
 5.2. *JUST NOTICEABLE DIFFERENCE DEFINITION, EXPLANATION AND EVALUATION* 56
 5.3. *INTERACTIVE GENETIC ALGORITHM (IGA) IN PRODUCT DESIGN* 58
 5.4. *JUST NOTICEABLE DIFFERENCE SURVEY* .. 60
 5.5. *JUST NOTICEABLE SURVEY JUSTIFICATION* ... 63

6. **FUTURE WORKS** ... 64
 6.1. *TUNING OF THE INTERACTIVE GENETIC ALGORITHM* 64
 6.2. *JUST NOTICEABLE DIFFERENCE SURVEY* .. 65
 6.3. *“VALIDATION OF A NEW INTERACTIVE PREFERENCE ASSESSMENT” SURVEY* 66

7. **PERSPECTIVE: DESIGN OF THE OPTIMAL PRODUCT** 69
 7.1. *DESIGN A PRODUCT BY SOLVING A OPTIMIZATION PROBLEM* 69
 7.2. *INTEGRATION OF THE USER IN THE DESIGN OF THE PRODUCT* 70

8. **CONCLUSION** .. 73

9. **REFERENCES** .. 74

10. **APPENDIX** ... 76
 APPENDIX A: QPM ANALYSIS MATLAB PROGRAM ... 76
 APPENDIX B: PILOT SURVEY DESCRIPTION .. 76
 APPENDIX C: PILOT SURVEY SUBJECTS REPORT AND ANALYSIS 76
 APPENDIX D: PILOT SURVEY AVERAGE PROFILE ANALYSIS & SURVEY SYNTHESIS 76
 APPENDIX E: PILOT SURVEY QPM VALUATIONS IGA FIRST PICKS COMPARISON 76
 APPENDIX F: VALIDATION SURVEY DESCRIPTION .. 76
 APPENDIX G: IRB FORM FOR THE VALIDATION SURVEY 76
 APPENDIX H: SUBJECT’S DATA OF THE VALIDATION SURVEY 76