Relationship between coupling and the controllability Grammian in co-design problems

Diane L. Petersa,*, Panos Y. Papalambrosb, A. Galip Ulsoyb

aMechanical Engineering Department, Kettering University, 1700 University Avenue, Flint, MI 48504, USA
bMechanical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA

\textbf{Abstract}

Design of smart products requires optimization of both the physical device, or artifact, and its controller. While some components of coupling can be computed \textit{a priori}, the existence and strength of coupling between these problems over the entire Pareto frontier currently cannot be computed until they are solved. If coupling is expected to be present, then the problem is often solved as a simultaneous, or all-in-one, optimization. This solution process is more difficult, computationally intensive, and operationally inconvenient than a sequential solution method. Consequently, knowing in advance whether coupling is weak or nonexistent is useful.

In this paper, a general formulation for the control problem is given, which includes components for the speed of response, accuracy of the response, and control effort. While this general formulation does not permit \textit{a priori} determination of coupling, the existence and strength of coupling can be determined for several special cases, which represent common and important control problems. Controllability is a property of the uncontrolled system and does not depend on the controller design. These relationships between coupling and controllability can be utilized in problem formulation, choice of solution method, and development of Control Proxy Functions (CPFs) for each of these problem types. The concepts developed are demonstrated via design of a positioning gantry and a MEMS actuator.

1. Introduction

The development of ‘smart’ products will solve a wide range of problems in diverse fields. Some applications are structures with active control \cite{1-3}, mechatronics \cite{4-7}, mechanisms \cite{8-13}, microelectrical mechanical systems (MEMS) \cite{14-16}, and chemical processing applications \cite{17,18}. These applications include important systems such as robotics \cite{19}, aeronautical structures, machine tools, sensors and automotive applications \cite{20,21}. Such smart products consist of both a physical system, called a plant or artifact, and a controller. To effectively design these products, the possible existence of coupling, or interdependence in the design of the artifact and of the controller, must be considered. Since both uncertainty in system parameters and more demanding performance requirements are associated with more strongly coupled systems \cite{22}, the quest for greater efficiency and more robust designs requires better techniques for the identification and management of coupling. Knowledge about coupling provides insight into the nature of the tradeoffs present and guides the choice of an appropriate solution method.

In the optimal design and control, i.e., co-design of these systems, it is necessary to specify one or more objectives for the system. In some cases, a single objective function may adequately capture the systems performance. However, in other cases there are tradeoffs between different system objectives, each of which is critical in the overall system performance. If two objectives are present, with one of them primarily identified with the artifact and the other with the controller, then the problem formulation presented in this paper is appropriate for the system. In the formulation presented here, there are two objective functions. One objective function \(f_a\) applies to the artifact (e.g., minimize mass), and the other objective \(f_c\) applies to the controller (e.g., minimize settling time). The full set of variables consists of artifact design variables \(d_a\) and controller design variables \(d_c\). Typically, there are also inequality and equality constraints associated with both the artifact and controller design problems, i.e., \(g_a, h_a\) and \(g_c, h_c\), respectively. In the case of bi-directional coupling, both objective functions and sets of constraints depend on both sets of variables. In uni-directional coupling, the artifact objective function and constraints are functions only of the artifact variables, while the...
controller objective function and constraints depend on both arti-
fact and controller variables. In this work, only uni-directional cou-
pling will be addressed. This does exclude many systems; however,
there are systems of interest which exhibit uni-directional cou-
pling, and it is a useful starting point for gaining insight into the
more general problem.

The co-design problem may be formulated as a combination of
the individual objectives. For example, with an objective which is a
linear combination, with weights applied to the individual objec-
tives, the co-design problem is formulated as follows:

$$\min_{d_a, d_c} w_a f_a(d_a) + w_c f_c(d_a, d_c)$$ \hspace{1cm} (1)

subject to

$$g_a(d_a) \leq 0$$ \hspace{1cm} (2)
$$h_a(d_a) = 0$$ \hspace{1cm} (3)
$$g_c(d_a, d_c) \leq 0$$ \hspace{1cm} (4)
$$h_c(d_a, d_c) = 0$$ \hspace{1cm} (5)

Two issues involved in the optimal co-design of coupled sys-
tems are: (a) identification of tradeoffs between the two objectives,
and (b) selection of appropriate methods of solution. These trade-
offs are present because the optimal design and optimal control
problems are coupled, and this coupling cannot be fully quantified
prior to solution of the optimization problem. Coupling can be par-
tially computed prior to solution of the full problem, as shown in
[23], which can be useful in some cases. In that work, it was shown
that coupling can be expressed as a product of two components.
One of these components, static gradient terms which capture
information about the plant, can be computed a priori, while the
second component, the integral of optimal control co-states, can-
not. Knowing these static terms, it is possible to identify some
cases in which coupling vanishes, i.e., those cases where the static
terms vanish. However, this does not provide full information on
coupling, which cannot be computed prior to full solution of the
problem, since the optimal control co-states are not known prior
to solution of the problem.

If coupling is known to exist, then the problem should be solved
using a method that lends itself to coupled systems. The solutions
found in a simultaneous, or all-in-one, optimization are system-optimal;
however, this approach is computationally intensive. In strongly coupled systems, an all-in-one formulation is
indeed preferable, and many advances have been made in this area,
improving the computational efficiency significantly. In other sys-
tems, however, this approach may not be necessary, if a modified
sequential approach can be taken. The modified sequential
approach also allows for the use of specialized control techniques,
such as root-locus or LQR, which are well established and under-
stood. Furthermore, the simultaneous formulation requires the
use of more than one discipline to formulate the full problem.
This presents organizational challenges, since expertise in the vari-
ous disciplines typically resides in different individuals, and often
in different groups within an organization. Iterative approaches
may also be useful for coupled systems, such as the approach out-
lined in [23], or the nested optimization method used in [24].
However, these approaches similarly require the full problem to
be formulated before solution.

A sequential approach, while easier to solve, does not typically
find the system optimum. A modified sequential approach, such as
that proposed in [25–28], may provide system-optimal solutions;
however, this method requires the specification of an appropriate
Control Proxy Function (CPF). An appropriate CPF needs to capture
the fundamental control limitations, and has been shown to be
related to the coupling vector [25,27]. Thus, in addition to indicat-
ing which solution methods might be most appropriate for a given
problem, knowledge of coupling can be used to determine what
CPF may be used to implement this particular method.

There are other methods and variations on these methods as
well, such as those focused on systems where only partial redesign
is possible due to system constraints [29]. Other methods focus on
nonlinear systems [30,31]. Yet other methods are based on
decomposition-based approaches [32]. New methods are continu-
ously being developed, for application to problems with specific
characteristics.

In this paper it is shown that for some problem formulations, rep-
resenting important classical control problems, the existence and
strength of coupling can be determined a priori using the controlla-
bility Grammian, which offers a significant advantage both in formu-
laing the co-design problem and in choosing appropriate methods
of solution. The metrics used for coupling and controllability are
introduced in Section 2. Section 3 introduces the positioning gan-
ty system used throughout this paper to illustrate the relationships
between coupling and controllability. In Section 4, a general control
objective function is given, and then several specific special cases are
addressed. For these cases, the relationships between coupling and
controllability are derived and demonstrated on the positioning gan-
ty system. Section 5 presents an additional case study, the applica-
tion of the work to a MEMS actuator; two optimizations are carried
out for this actuator, one in which coupling is identified and a simul-
taneous optimization is carried out, and a second one in which
knowledge of coupling is used to select a CPF. Finally, Section 6 pre-
sents concluding remarks.

2. Metrics used for coupling and controllability

Several metrics have been developed for quantification of cou-
pling. These metrics include a vector based on optimality condi-
tions [33,34], a matrix based on the Global Sensitivity Equations
(GSEs) [35], and the sensitivities that appear in the GSEs [36].
The metric used here is the vector description of coupling given
in Eq. (6), which is applicable to a co-design problem with
uni-directional coupling [33]. This metric, derived specifically for
problems of this form, is preferred due to its relatively simple form
[37].

$$\Gamma_v = \frac{w_c}{w_a} \left(\frac{\partial f_c(d_a, d_c)}{\partial d_c} + \frac{\partial f_c(d_a, d_c)}{\partial d_a} \right)$$ \hspace{1cm} (6)

where \(\Gamma_v \) must be evaluated at the optimal solution to Eqs. (1)–(5).
Consequently, the coupling cannot be determined a priori, i.e., before
finding a solution to the simultaneous co-design problem in Eqs. (1)–
(5). When \(\Gamma_v = 0 \), the optimization problem is uncoupled. While it is
possible for an optimization problem to decouple in cases where
\(\Gamma_v \neq 0 \), i.e., constraint decoupling [24], we will not address that situa-
tion in this work; in the cases we consider, decoupling will only
occur when \(\Gamma_v = 0 \). In this case, the artifact design problem

$$\min_{d_a} f_a(d_a)$$ \hspace{1cm} (7)

subject to

$$g_a(d_a) \leq 0$$ \hspace{1cm} (8)
$$h_a(d_a) = 0$$ \hspace{1cm} (9)

can first be solved; then, given the optimal artifact design \(d_a^* \), the
controller design problem

$$\min_{d_c} f_c(d_c)$$ \hspace{1cm} (10)

subject to

$$g_c(d_c) \leq 0$$ \hspace{1cm} (11)
$$h_c(d_c) = 0$$ \hspace{1cm} (12)
can be solved to obtain the same result as obtained from solving the simultaneous co-design problem in Eqs. (1)–(5).

There are several measures of controllability. One metric which is particularly useful in the analysis of co-design problems with coupling is the controllability Grammian matrix, which can be calculated for both constant and time-varying parameter linear dynamical systems. For a system expressed in the form

\[
\dot{x}(t) = Ax(t) + Bu(t) \quad (13)
\]

\[
y(t) = Cx(t) + Du(t) \quad (14)
\]

the controllability Grammian is the matrix

\[
W_c(t) = \int_0^t \Phi(\tau)BB^T\Phi^T(\tau) d\tau \quad (15)
\]

where \(\Phi(\tau)\) is the state transition matrix [38]. If the matrices \(A\) and \(B\) are time-invariant, then \(W_c(t)\) is given by

\[
W_c(t) = \int_0^t e^{A\tau}BB^Te^{A^T\tau} d\tau \quad (16)
\]

In the case where the final time \(t \to \infty\), the steady-state controllability Grammian, \(W_{cs}\), can also be found by solving the Lyapunov equation

\[
AW_{cs} + W_{cs}A^T = -BB^T. \quad (17)
\]

The controllability Grammian is often used to determine simply whether or not a system is controllable; if it is singular, the system is not controllable. It can also be used to determine the minimum control effort required to move a system from the origin to a final state \(x_f\) at some final time \(t_f\), where the control effort, \(E(t_f)\), is given by

\[
E(t_f) = \int_0^{t_f} u(t)^T u(t) dt \quad (18)
\]

and its minimum value, \(E'(t_f)\), is given by [38]:

\[
E'(t_f) = x_f^T W_c(t_f)^{-1} x_f \quad (19)
\]

It is important to note that Eq. (19) is independent of the control structure; it depends only on the dynamics of the uncontrolled system, i.e., \(A\) and \(B\), and the final time \(t_f\). The optimal (i.e., minimum control) controller performance depends on the controllability Grammian, which is independent of the control architecture and variables. Thus, we will show that, for a large class of important control design problems, the Grammian can be used to determine coupling a priori.

3. Configuration of positioning gantry example system

Consider the system shown in Fig. 1, representing a simple model of a positioning gantry. In this system, a mass \(M\) is connected to a fixed surface by a linear spring with stiffness \(k_s\). A belt connects to the mass and wraps around a pulley with radius \(r\), which is mounted on a DC motor with armature resistance \(R_a\) and motor constant \(k_e\). The mass is assumed to slide on a frictionless surface. The displacement of the mass from its original position is \(Z\). The system can be modeled by the following equations:

\[
\dot{x} = Ax + Bu \quad (20)
\]

\[
Z = Cx \quad (21)
\]

\[
x = \begin{bmatrix} Z \\ \dot{Z} \end{bmatrix} \quad (22)
\]

\[
A = \begin{bmatrix} 0 & 1 \\ \frac{-k}{m} & \frac{-b}{m} \end{bmatrix} \quad (23)
\]

\[
B = \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} \quad (24)
\]

\[
C = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad (25)
\]

where \(m = \frac{4\pi^2}{k_s}\), \(b = \frac{b}{m}\), and \(k = \frac{k_s}{k_e}\). A state-feedback control with gains \(K = [K_1 \ K_2]\) and precompensator \(G\) is applied to the system, as shown in Fig. 2, to generate the input voltage \(u\) to the motor. The steady-state voltage is denoted as \(u_{ss}\). Values of the parameters are \(R_a = 2 \ \Omega\), \(M = 2 \ \text{kg}\), \(k_s = 2 \ \text{N/mm}\), and \(u_{ss} = 10 \ \text{V}\). The design variables \(r\) and \(k_e\) are found in the optimization of the gantry system using Matlab’s \texttt{fmincon} function. This example will be used to illustrate the relationship between coupling and controllability in Section 4.

4. Relationships between and \(W_c\)

Consider a system whose dynamics are linear and time-invariant, and which is modeled in the form

\[
\dot{x}(t) = A(d_o)x(t) + B(d_u)u(t) \quad (26)
\]

\[
x(0) = x_0
\]

\[
x(t_f) = x_f
\]

It is assumed that this system exhibits uni-directional coupling, as in (1)–(5). The objective function for the optimization is a weighted sum of the two individual objectives, where the weights \(w_0\) and \(w_c\) are strictly positive.

The control objective function for this system is assumed to take the general form of

\[
f_c = \int_0^{t_f} (x(t)^T Q x(t) + u(t)^T R u(t) + s) dt. \quad (27)
\]

This objective function includes the accuracy of the system’s response, weighted by the matrix \(Q\); control effort, weighted by the matrix \(R\); and the speed of response, weighted by the scalar \(s\). Such an objective can be formulated either for a fixed terminal time problem or for a steady-state problem, by either assigning a finite
value to \(t_f \) or by assuming that \(t_f \to \infty \). It is important to note that this formulation is not all-encompassing; there are other terms that could be added, such as energy-based terms, and it could be expanded to include the Mayer (terminal cost) term. However, this formulation does cover a significant range of control objectives that are of interest.

While the existence and strength of coupling has not been derived for this general problem, it is possible to derive useful relationships for several special cases of this general formulation. These special cases represent important classical control problems, and can provide insight into the general problem. The specific cases considered here are described in Table 1.

In the first case, the case of fixed terminal time [39], energy is of primary interest, and the problem is formulated to minimize control effort. In the second case, the speed of response is of importance; a constraint is placed on control effort, but the problem objective is to minimize the response time. In the third case, the control problem is formulated as a classical infinite horizon Linear Quadratic Regulator (LQR) problem, in which a combination of control effort and the system states is minimized.

4.1. Case I: Control effort as objective

In Case I, the controller objective function is the control effort required to move the system from the origin to a state \(x_f(d_a) \) at some specified time \(t_f \), where \(t_f \) is a parameter, as given by Eq. (18). Using (19) and (18), the controller objective function \(f_c(d_a, d_c) \) will satisfy the relation

\[
f_c(d_a, d_c) \geq x(t_f(d_a) W_c(d_a))^{-1} x_f(d_a)
\]

where the equality applies if an optimal (i.e., minimum control effort) controller is chosen. The coupling vector is computed from (6) as follows:

\[
\Gamma_v = \frac{W_c}{W_a} \frac{\partial}{\partial d_a} \left(x(t_f(d_a) W_c(d_a))^{-1} x_f(d_a) \right)
\]

\[
\begin{bmatrix}
 x_f(d_a)^T \frac{\partial}{\partial d_a} W_c(d_a) x_f(d_a) + 2 x_f(d_a)^T \frac{\partial}{\partial d_a} W_c(d_a) x_f(d_a) \\
 x_f(d_a)^T \frac{\partial}{\partial d_a} W_c(d_a) x_f(d_a) + 2 x_f(d_a)^T \frac{\partial}{\partial d_a} W_c(d_a) x_f(d_a) \\
 \vdots \\
 x_f(d_a)^T \frac{\partial}{\partial d_a} W_c(d_a) x_f(d_a) + 2 x_f(d_a)^T \frac{\partial}{\partial d_a} W_c(d_a) x_f(d_a)
\end{bmatrix}
\]

Given a particular system, it is possible to express the coupling in terms of the artifact design variables \(d_a \), constants, and parameters in the problem. If the \(i \)th term in the coupling vector vanishes, then the \(i \)th artifact design variable will not participate in the coupling. If all terms in the coupling vector vanish, then the problem is uncoupled. A particular coupling term will vanish under one of two conditions:

1. The vectors \(x_i(d_a) \) and \((2 W_c(d_a)^{-1} \frac{\partial}{\partial d_a} W_c(d_a) - \frac{\partial}{\partial d_a} x_f(d_a)) \) are orthogonal.
2. \(\frac{\partial}{\partial d_a} x_f(d_a) = -\frac{1}{2} W_c(d_a)^{-1} W_c(d_a)^{-1} x_f(d_a) \).

This can occur when the variables \(d_a \) result in changes in the control effort that counteract the effects of the changes in \(x_f \). As an example, an increased \(x_f \) could be associated with a problem configuration with a more efficient use of control effort.

The problem further simplifies if the final state \(x_f \) is not dependent on \(d_a \). In that case, the expression given in (30) can be simplified to

\[
\Gamma_v = \frac{W_c}{W_a} \frac{\partial}{\partial d_a} \left(x_f(d_a) \right)
\]

In this situation, the requirement for decoupling that \(\Gamma_v = 0 \) will be met if \(\frac{\partial}{\partial d_a} x_f(d_a) = 0 \) for all feasible values of \(d_a \). Of course, it is also possible for the coupling vector to vanish if the vector \(\frac{\partial}{\partial d_a} x_f(d_a) \) is orthogonal to \(x_f \); however, examining the dependence of the controllability Gramian matrix on the artifact design variables will often indicate whether coupling exists, and indicate its strength.

4.1.1. Positioning gantry example for Case I

For the positioning gantry described in Section 3, the following objectives and constraints are selected:

\[
f_a(k_i, r) = -Z_f(k_i, r)
\]

\[2.5 \leq r \leq 7.5\]

\[5 \leq k_i \leq 20\]

where the final displacement \(Z_f(k_i, r) \) represents the peak displacement, with a 10% overshoot over the steady-state displacement, \(Z_{ss}(k_i, r) \).

\[
Z_f = 1.1 Z_{ss} - \frac{1.1 u_{ak} k_i}{r R_k k_i}
\]

The controller objective is

\[
f_c(k_i, r, k_1, k_2, G) = E = \int_0^{t_f} (u(k_i, r, k_1, k_2, G, t))^2 dt
\]

In this problem, \(Q = 0, s = 0 \), and \(R = 1 \). This optimization problem then, clearly fits the description for a Case I problem. The controllability Gramian \(W_c(k_i, r, t_f) \) of this system is given by

\[
W_c(k_i, r, t_f) = \begin{bmatrix}
 W_{c_{11}}(k_i, r, t_f) & W_{c_{12}}(k_i, r, t_f) \\
 W_{c_{21}}(k_i, r, t_f) & W_{c_{22}}(k_i, r, t_f)
\end{bmatrix}
\]

where the individual terms are as follows:

\[
W_{c_{11}}(k_i, r, t_f) = \frac{1}{2bk} \left(\frac{2me}{b} + \frac{e^{\frac{r}{2b}}} {2k\sqrt{4mk - b^2}} \right) + \frac{e^{\frac{r}{2b}}} {2k\sqrt{4mk - b^2}} \left(\frac{4mk - b^2}{m} \right) \\
\times \sin \left(\sqrt{4mk - b^2} \frac{t_f}{m} \right) + \frac{e^{\frac{r}{2b}}} {2k(4mk - b^2)} \left(\frac{4mk - b^2}{m} \right)
\]

\[
W_{c_{12}}(k_i, r, t_f) = \frac{1}{2bk} \left(\frac{2me}{b} + \frac{e^{\frac{r}{2b}}} {2k\sqrt{4mk - b^2}} \right) + \frac{e^{\frac{r}{2b}}} {2k\sqrt{4mk - b^2}} \left(\frac{4mk - b^2}{m} \right) \\
\times \cos \left(\sqrt{4mk - b^2} \frac{t_f}{m} \right) + \frac{e^{\frac{r}{2b}}} {2k(4mk - b^2)} \left(\frac{4mk - b^2}{m} \right)
\]

<table>
<thead>
<tr>
<th>Case</th>
<th>Description</th>
<th>(Q)</th>
<th>(R)</th>
<th>(s)</th>
<th>Initial/terminal condition(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case I</td>
<td>Minimum control effort with fixed terminal time</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(x_0 - 0)</td>
</tr>
<tr>
<td>Case II</td>
<td>Minimum response time with fixed control effort</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(x_0 - 0)</td>
</tr>
<tr>
<td>Case III</td>
<td>Infinite time LQR</td>
<td>Positive semi-definite</td>
<td>Positive definite</td>
<td>0</td>
<td>(x_f - 0)</td>
</tr>
</tbody>
</table>

Bold denotes vectors and/or matrices.
Taking derivatives of both $x_\text{c}(d_a)$ and $W_c(d_a, t_f)$, it can be shown that there are no feasible values of r and k_e for which $\Gamma_v = 0$. Therefore, it is concluded that the problem will be coupled, and an appropriate solution method for a coupled problem should be chosen. When the simultaneous co-design problem is explicitly solved, it is seen to be coupled, with the expected tradeoff between the objectives shown in Fig. 3.

4.2. Case II: Time as objective

In Case II problems, the controller objective function and constraint are as follows:

$$f_c(d_a, d_c) = t_f(d_a, d_c) \tag{42}$$

$$g_c(d_a, d_c) = \int_0^{t_f} u(d_a, d_c, t)^T u(d_a, d_c, t) dt - E_{\text{max}} \leq 0 \tag{43}$$

Assuming that the constraint is active and that an optimal controller (i.e., one which uses the minimum control effort) is chosen, $x_\text{c}(d_a)^T W_c(d_a)^{-1} x_\text{c}(d_a) = E_{\text{max}} \tag{44}$

Taking derivatives of (44) and solving for $\frac{\partial f_c}{\partial d_c}$:

$$\frac{\partial f_c}{\partial d_c} = -\frac{2x_\text{c}(d_a)^T W_c(d_a)^{-1} \frac{\partial x_\text{c}(d_a)}{\partial d_a}}{2x_\text{c}(d_a)^T W_c(d_a)^{-1} x_\text{c}(d_a)} x_\text{c}(d_a) \tag{45}$$

and the coupling can be expressed as

$$\begin{align*}
\Gamma_v &= -\frac{W_c}{W_0 D_N} \left[2x_\text{c}(d_a)^T W_c(d_a)^{-1} \frac{\partial x_\text{c}(d_a)}{\partial d_a} + x_\text{c}(d_a)^T \frac{\partial W_c(d_a)}{\partial d_a} x_\text{c}(d_a) \right] \\
&\quad \vdots \\
&\quad 2x_\text{c}(d_a)^T W_c(d_a)^{-1} \frac{\partial x_\text{c}(d_a)}{\partial d_a} + x_\text{c}(d_a)^T \frac{\partial W_c(d_a)}{\partial d_a} x_\text{c}(d_a)
\end{align*} \tag{46}$$

where

$$D_N = 2x_\text{c}(d_a)^T W_c(d_a)^{-1} \frac{\partial x_\text{c}(d_a)}{\partial d_a} + x_\text{c}(d_a)^T \frac{\partial W_c(d_a)}{\partial d_a} x_\text{c}(d_a) \tag{47}$$

Note that the coupling vector is parallel to that seen for Case I, and the conditions for decoupling in this problem are mathematically identical. This indicates that the physical conditions under which the problems decouple are also the same. As in Case I, therefore, one situation which would result in decoupling is in which changes in d_a produce both a greater displacement x_c of the system and a more efficient use of the available control effort. Also as in Case I, if the final state x_c is a parameter rather than being a function of d_a, then the coupling vector will simplify. In this case, the coupling can be expressed as

$$\begin{align*}
\Gamma_v &= -\frac{W_c}{W_0} \left[x_\text{c}(d_a)^T \frac{\partial W_c(d_a)}{\partial d_a} x_\text{c}(d_a) \right] \\
&\quad \vdots \\
&\quad x_\text{c}(d_a)^T \frac{\partial W_c(d_a)}{\partial d_a} x_\text{c}(d_a)
\end{align*} \tag{48}$$

which is parallel to the simplified coupling vector given by Eq. (31), with identical conditions for decoupling.

4.2.1. Positioning gantry example for Case II

Assume, in this case, that the artifact objective and constraints are as given in Eqs. (32)–(34). The control objective and constraints are as follows:

$$f_e(k_t, r, K_1, K_2, G) = t_f(k_t, r, K_1, K_2, G) \tag{49}$$

$$g_e(k_t, r, K_1, K_2, G) = \int_0^t u(t, k_t, r, K_1, K_2, G)^2 dt - E - E' \leq 0 \tag{50}$$

Monotonicity analysis indicates that the constraint g_e will be active [40]; thus, this problem meets the conditions set down for Case II. The controllability Grammian is given by Eqs. (37)–(41). In this case, the coupling is again non-zero for every allowed value of r and k_t. When the problem is solved, the anticipated tradeoff between f_e and f_c is evident, as shown in Fig. 4.

4.3. Case III: Infinite horizon Linear Quadratic Regulator (LQR)

The infinite-time LQR problem is designed to find the optimal control signal $u(t)$ to transition a system from an initial state $x_0 = x(0)$ to the zero state. The optimal control signal is defined as the control signal which minimizes the quadratic cost function

$$f_c = \int_0^\infty (x(t)^T Q x(t) + u(t)^T R u(t)) dt \tag{51}$$

In the most general LQR problem formulation, there may also be a cross-term present, i.e., the cost function would include a term $2x(t)^T S u(t)$; an example of this can be seen in [28]. However, it
has been shown that a change in variables will reduce that more general problem to the form shown in Eq. (51).

It is well-established [38] that the optimal solution to this LQR problem is

$$\mathbf{u}(t) = -\mathbf{K}\mathbf{x}(t)$$

(52)

where \(\mathbf{K}\) is uniquely determined given \(\mathbf{A}, \mathbf{B}, \mathbf{Q}\), and \(\mathbf{R}\), and the terms \(\mathbf{u}, \mathbf{K}\), and \(\mathbf{x}\) have dimensionality of \((m \times 1), (m \times n),\) and \((n \times 1)\), respectively. The LQR problem can be analyzed for the two cases where \(m = n\) and \(m \neq n\), both of which lead to the same conclusion regarding the relationship between coupling and controllability.

In the case where \(m = n\), the gain matrix \(\mathbf{K}\) is invertible, and it is possible to solve for \(\mathbf{x}\) as \(\mathbf{x} = -\mathbf{K}^{-1}\mathbf{u}\), and the LQR objective, \(\mathcal{J}\), can be rewritten as

$$J = \int_0^\infty \left(\mathbf{u}^T \left(\mathbf{R} + (\mathbf{K}^{-1})^T \mathbf{Q} (\mathbf{K}^{-1})\right) \mathbf{u}\right) dt$$

(53)

$$= \int_0^\infty \left(\mathbf{u}^T \mathbf{P} \mathbf{u}\right) dt$$

(54)

This is in the same form as Eq. (18), with the addition of the matrix \(\mathbf{P}\) and the condition that \(t_1 \to \infty\). The minimum value of \(J\), then, will be a function of \(\mathbf{W}_c^x\).

In the case where \(m \neq n\), the Moore–Penrose pseudoinverse can be used to write \(\mathbf{x}\) in the form of \(\mathbf{x} = -\mathbf{K}'\mathbf{u}\), and \(\mathbf{P} = \mathbf{R} + (\mathbf{K}')^T \mathbf{Q} (\mathbf{K}')\). This allows an approximation for \(J\) to be written as

$$J \approx \int_0^\infty \left(\mathbf{u}^T \mathbf{P} \mathbf{u}\right) dt$$

(55)

and, as in the case of \(m = n\), this is in the same form as Eq. (18) and the minimum value of \(J\) will be a function of \(\mathbf{W}_c^x\). We can state, therefore, that the LQR objective is a linear function of the infinite-time controllability Grammian when LQR control is used, and can be written as

$$f'_c = \mathbf{x}_0^T \mathbf{W}_c^{-1} \mathbf{x}_0 + \int_0^\infty \left(\mathbf{u}^T \left(\mathbf{P} - I\right) \mathbf{u}\right) dt$$

(56)

where \(\mathbf{u}\) is given by the following relation [38]:

$$\mathbf{u}(t) = \lim_{\theta \to \infty} \left\{-\mathbf{B}_f \mathbf{e}^T (t - \theta) \mathbf{W}_c (t_1)^{-1} (e^{\theta} \mathbf{x}_0)\right\}$$

(57)

Since the steady-state control signal is zero, Eq. (56) simplifies to

$$f'_c = \mathbf{x}_0^T \mathbf{W}_c^{-1} \mathbf{x}_0$$

(58)

This can then be differentiated to obtain the coupling relation, which is given by

$$\Gamma_c = \frac{\partial}{\partial \mathbf{x}_0} \left(\mathbf{x}_0^T \mathbf{W}_c^{-1} \mathbf{x}_0\right)$$

(59)

This relation can be further simplified, in the case of loop transfer recovery, as shown in [41]. In both that special case and in this more general case, however, the relationship between coupling and controllability is clearly seen.

4.3.1. Positioning gantry example for Case III

Consider, again, the positioning gantry system shown in Section 2. In this case, the artifact objective function is assumed to be the system’s total weight, which takes the specific form

$$f_a(r, k_c) = c_1 + c_2 k_c ^ {1.5} + c_3 r ^ 2$$

(60)

where \(c_1 = 10, c_2 = 5,\) and \(c_3 = 2.5,\) subject to the bounds given in Eqs. (33) and (34). The controller optimization problem is formulated as an LQR problem with controller objective

$$f_c (r, k_c, K_1, K_2),$$

given by Eq. (51) with \(\mathbf{x}_0 = \begin{bmatrix} 3.5 \\ 0 \end{bmatrix} , R = 1,\) and

$$\mathbf{Q} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$ The coupling in this case can be shown to vanish for all values of \(r\) and \(k_c\), indicating that the problem is uncoupled and the artifact and controller can be designed sequentially. When the co-design problem is solved, no tradeoff is seen. For all values of \(w_0\) and \(w_c\), \(f_a = 81.53\) and \(f_c = 5.78.

5. MEMS actuator case study

The MEMS actuator considered here, shown in Fig. 5, was originally designed by Tung and Kurabayashi [42] and by Peters et al. [16]. The actuator utilizes four electrostatic comb-drive actuators to produce an out-of-plane displacement. To produce this displacement, each comb drive is excited with a voltage, \(V\), resulting in horizontal (in-plane) movement (\(\Delta X\)) of the silicon shuttles. The micro-hinges on the polydimethyl siloxane (PDMS) platform bend, and the platform moves vertically, or out-of-plane (\(\Delta Z\)). The amount of movement resulting from the comb drives’ actuation depends on both the applied voltage, \(V\), and the physical dimensions of the actuator. Changing the actuator’s dimensions results in a different output displacement for the same applied voltage.

The displacement of the actuator, \(\Delta Z\), is given by

$$\Delta Z = (h_1 + h_2)(1 - \cos \Delta \theta) + (t + p) \sin \Delta \theta$$

(61)

where \(p, t, h_1,\) and \(h_2\) are the hinge dimensions shown in Fig. 6, and \(\Delta \theta\) is the angular displacement of the hinge.

The angular displacement \(\Delta \theta\) satisfies the differential equation

$$M_{MEMS} \Delta \theta + C_{MEMS} \Delta \theta + K_{MEMS} \Delta \theta = A(\Delta \theta) V^2$$

(62)

where \(M_{MEMS}, C_{MEMS}, K_{MEMS},\) and \(A(\Delta \theta)\) are functions of the actuator geometry, as given in Eqs. (63)–(66). Derivations, and the equations for the masses and stiffnesses \(M_{SI}, M_{PDMS}, M_{Hinge}, K_{SI},\) and \(K_{PDMS},\) are given in [42].

$$M_{MEMS} = M_{SI}(h_1 + h_2)^2 + M_{PDMS} (t + p)^2$$

$$+ \frac{1}{2} M_{Hinge} \left((h_1 + h_2)^2 + (t + p)^2\right)$$

(63)

$$C_{MEMS} = 2 c \sqrt{\left(M_{SI}(h_1 + h_2)^2 + M_{PDMS} (t + p)^2\right) \left(K_{SI}(h_1 + h_2)^2 + 2K_{PDMS}\right)}$$

(64)

$$K_{MEMS} = K_{SI}(h_1 + h_2)^2 + 2K_{PDMS}$$

(65)
\[A(\Delta \theta) = \frac{n \varepsilon_0 (h_1 + h_2)}{d} \left[(h_1 + h_2) - (t + p)\Delta \theta\right] \]

(66)

where \(\zeta = 0.1 \) is an experimentally determined parameter, \(n = 50 \) is the number of fingers in the comb drive, \(\varepsilon_0 = 8.854 \times 12 \) F/m is the permittivity of vacuum, and \(d = 3 \) \(\mu \)m is the width of a finger.

Alternatively, the system dynamics may be written in state-space form as

\[
\begin{bmatrix}
\Delta \dot{\theta} \\
\Delta h
\end{bmatrix} = \begin{bmatrix}
0 & -\frac{K_{MEMS}}{M_{MEMS}} & \frac{C_{MEMS}}{M_{MEMS}} \\
-\frac{K_{MEMS}}{M_{MEMS}} & -\frac{C_{MEMS}}{M_{MEMS}}
\end{bmatrix} \begin{bmatrix}
\Delta \theta \\
\Delta h
\end{bmatrix} + \begin{bmatrix}
0 \\
\frac{A(\Delta \theta)}{M_{MEMS}}
\end{bmatrix} V^2
\]

(67)

Note that the coefficient \(A \) in Eq. (62) is a function of \(\Delta \theta \). Thus, the resulting controller design problem is non-linear. However, depending on the values of the various parameters, a linear approximation may be used. Naturally, such an approximation should be used cautiously in cases when the problem is highly non-linear; however, the linear assumption has been shown to be effective in previous analyses of this actuator [16,25].

Two optimizations will be performed for this actuator. In the first optimization, the objective will be to maximize final displacement and minimize control effort for a given controller, subject to a set of constraints, and the relationship between coupling and controllability will be used to select design variables and choose an appropriate solution method. In the second optimization, the objective will be to maximize the steady-state displacement of the actuator and to minimize a LQR objective. A sequential optimization using a CPF will be performed, and the relationship between coupling and controllability will be used to select an appropriate CPF.

5.1. Optimization for final displacement and control effort

Assume that the MEMS actuator is to be optimized to maximize its final displacement, \(\Delta Z_f \), and to minimize the control effort required to achieve that displacement at a specified time, \(t_f = 0.25 \) ms. The final displacement will be achieved at a 5% overshoot over the steady-state displacement.

An integral controller with state feedback is applied to the system, as shown in Fig. 7. It is assumed that the angle \(\Delta \theta \) and the angular velocity \(\Delta \dot{\theta} \) can be measured, and that the angle \(\Delta \theta \) is to be controlled. The dynamics of the closed-loop system can then be written as

\[
M_{MEMS} \Delta \ddot{\theta} + (C_{MEMS} + K_A(\Delta \theta)) \Delta \dot{\theta} + (K_{MEMS} + K_A(\Delta \theta)) \Delta \theta - K_A(\Delta \theta) \int_0^{t_f} (\Delta \theta_t - \Delta \theta) \, dt = 0
\]

(68)

The artifact and control objective functions are given by the relations

\[
f_a = -\Delta Z_f = -1.05 \Delta Z_{fs}
\]

(69)

\[
f_c = E = \int_0^{t_f} (u(t))^2 \, dt = \int_0^{t_f} (V(t))^2 \, dt
\]

(70)

with artifact inequality constraints, \(g_a \), based on manufacturability, stress, and electrical and mechanical stability [25]. This optimization problem satisfies the description for Case I, where \(K = 1 \), and thus the coupling can be evaluated using Eq. (30).

Five potential artifact design variables are considered, the hinge dimensions \(p \), \(h_1 \), and \(h_2 \), and the shuttle length, \(l_1 \). It can be determined that there are no values for which the coupling vector will vanish, and thus a decoupled optimization problem cannot be formulated with them. However, it is useful to know how strongly coupled the problem would be with the potential design variables. Therefore, the derivatives of the controllability Grammian are evaluated numerically for the potential design variables at the nominal values given in Table 2. Note that the controllability Grammian does not depend on the potential design variable \(l_1 \), and therefore it can be stated that \(l_1 \) does not participate in the coupling.

\[
\frac{\partial W_c}{\partial p} = \begin{bmatrix}
0 & -0.0002 \\
-0.0002 & -100.6
\end{bmatrix}
\]

(71)

\[
\frac{\partial W_c}{\partial t} = \begin{bmatrix}
0 & -0.0002 \\
-0.0002 & -112.7
\end{bmatrix}
\]

(72)

\[
\frac{\partial W_c}{\partial h_1} = \begin{bmatrix}
0 & -0.0038 \\
-0.0038 & -149.9
\end{bmatrix}
\]

(73)

\[
\frac{\partial W_c}{\partial h_2} = \begin{bmatrix}
0 & 0.00001 \\
0.00001 & 61.84
\end{bmatrix}
\]

(74)

\[
\frac{\partial W_c}{\partial l_1} = \begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}
\]

(75)
It can be seen that, in all these cases, the off-diagonal terms are quite small, and there is a zero term in each of them. The only term which is of any significant size is the lower diagonal term. This indicates that only one of the terms in the Grammian is significantly affected by the design variables, and it is the term that corresponds to the angular velocity of the actuator.

The variables chosen for this optimization are \(l_t \), \(p \), and \(t \), while \(h_1 \) and \(h_2 \) are set as parameters. This choice is made, in the case of \(h_t \), because of its relatively large effect on coupling, as seen from Eq. (73). In the case of \(h_2 \), while it has little effect on coupling, it also has a small effect on the artifact objective. The variables \(p \) and \(t \) have a comparatively large effect on the artifact objective. Since they do participate in coupling, a simultaneous optimization is chosen, and the optimization problem is given by

\[
\min_{d_a, d_c} \ - w_a \Delta Z_f + w_c E \quad (76)
\]

subject to

\[
g_{a_1} = t - 5h_1 \leq 0 \quad (77)
\]

\[
g_{a_2} = 910 - l_t - h_1 - 2t + \frac{\Delta X_{ss}}{2} \leq 0 \quad (78)
\]

\[
g_{a_3} = \frac{n_r \varepsilon (l_1 + h_1) V_0^2}{a} - \frac{k_o \pi^2 E_{PM} w_2 (2h_1 + h_2)^3}{12p^2} \leq 0 \quad (79)
\]

\[
g_{a_4} = \Delta X_{ss} - \left(\frac{l_1}{\sqrt{2}} \right) \leq 0 \quad (80)
\]

\[
g_{a_5} = \frac{E_{PM} h_1 \Delta h_1}{2p} - \sigma_{PMGmax} \leq 0 \quad (81)
\]

\[
g_{a_6} = \frac{3 \Delta X_{ss} \varepsilon_0 b_1}{4 \varepsilon_0^2} - \sigma_{state} \leq 0 \quad (82)
\]

1 \(\mu \text{m} \leq p \leq 1000 \ \mu \text{m} \quad (83)

1 \(\mu \text{m} \leq t \leq 1000 \ \mu \text{m} \quad (84)

100 \(\mu \text{m} \leq l_t \leq 1000 \ \mu \text{m} \quad (85)

where \(d_a = (l_t, p, t) \) and \(d_c = (K_1, K_2, K_3) \).

Solutions for various choices of \(w_a \) and \(w_c \) are shown in Fig. 8, and it can be seen that coupling is present, as expected.

Having a priori knowledge of the existence of coupling was useful in the formulation of this problem. Using this knowledge, it was possible to make an informed choice of artifact design variables. In this case, a completely decoupled problem could not be formulated unless the variables were restricted to \(l_t \). However, knowing the relative contribution to coupling of each potential variable choice allows a designer to weigh the increased problem complexity posed by coupling against the potential improvement in the artifact objective function for that variable. In addition, given the knowledge that the problem was coupled, a simultaneous optimization was chosen. If the problem had been known to be uncoupled, then a sequential optimization would have been chosen instead.

5.2. Optimization for steady-state displacement and LQR control

Assume that the MEMS actuator is to be optimized to maximize its steady-state displacement, \(\Delta Z_{ss} \), and to minimize an LQR objective, in which \(R = I \) and \(Q = I \). The variables chosen for this optimization are the same as those used in Section 5.1, i.e., \(l_t, p, \) and \(t \), and the constraints are those given in Eqs. (77)–(82). The objective function is formulated as a linear weighted combination of the artifact objective function and the Control Proxy Function (CPF):

\[
\min_{d_a} - w_1 \Delta Z_{ss} + w_2 \chi \quad (86)
\]

where the steady-state displacement is given by

\[
Z_{ss} = (h_1 + h_2)(1 - \cos \Delta \theta) - (t + p) \sin \Delta \theta \quad (87)
\]

as derived in [42]. The LQR objective given by Eq. (51) is then minimized for the resultant artifact design. Obtaining an appropriate artifact design which is predisposed to effective LQR control depends on the CPF selected, and how well it captures the tradeoff between the artifact and controller design.

The relationship between coupling and controllability is used to select an appropriate CPF. This optimization problem satisfies the criteria for Case III, and therefore it is known that the coupling is given by Eq. (59). This suggests that a CPF based on the steady-state controllability Grammian may be effective, so the CPF is chosen to be

\[
\chi = \frac{1}{\det \left(\omega C \right)} \quad (88)
\]

Solutions for various weights are shown in Fig. 9, with the solution set to the simultaneous optimization problem shown. It can be seen that this CPF is effective, and that the results of the modified sequential optimization are system-optimal. Knowing the relationship between coupling and controllability facilitated an appropriate choice of CPF, and the problem could have been solved without the need to formulate a simultaneous optimization.

6. Concluding remarks

In this paper, we have formulated an optimal co-design problem with a general controller objective that includes the accuracy of response, speed of response, and control effort required. We have shown that, for several important special cases of this formulation, it is possible to derive a relationship between the coupling vector and the controllability Grammian matrix for the system. This relation is independent of the artifact objective function and the controller architecture, and this allows the a priori calculation of coupling using the controllability Grammian. This relationship, while it requires knowledge of the control objective, does not
require any knowledge of the control topology used to meet that objective.

While such a relationship for the general controller objective has not been derived, the cases presented here do give some important insight into this general problem. As an example, it is interesting to note that the first two cases, involving control effort and speed of response respectively, yield identical conditions for decoupling. This suggests that it is likely that these conditions will be valid for a controller objective that includes both of these two objectives; a proof of this conjecture is left for future work. It is further noted that the form of the LQR objective function is similar to the control objective in the first case, suggesting a strong fundamental connection among the various control objectives.

These results are significant for their use in understanding the nature of the trade-off between design and control, including a better picture of what the complete Pareto curve might look like. Use of coupling information to characterize the Pareto curve can be useful in cases where obtaining a large number of Pareto optimal solutions is expensive, as discussed in [43,44]. These results are also useful in problem formulation and choice of a solution method.

When a co-design problem is being formulated and artifact design variables are being chosen, the strength of the coupling in a potential formulation can be considered. In the case of LQR problems, it may be possible to choose the matrices Q and R in order to facilitate problem decoupling. In addition, for all cases presented in this paper, the effect on coupling of potential artifact design variables can be considered. If a potential design variable participates in coupling, then its effect on the artifact objective function can be evaluated to determine whether it is significant enough to justify the increased problem complexity. If a variable participates in coupling but has a relatively small effect on the artifact objective function, it may be chosen as a parameter, resulting in an uncoupled problem which can be solved sequentially with no loss of optimality.

If it is determined that a problem cannot be decoupled, or if the potential improvement in the artifact objective function justifies the increased complexity of a coupled problem, then an appropriate solution method can be chosen. It is known, in this case, that a sequential solution method will not guarantee optimality, and a method that accounts for coupling should be used. Such methods include simultaneous problem formulations, methods involving decomposition and coordination of sub-systems, and the use of a Control Proxy Function (CPF) [25–27]. The a priori knowledge of coupling is particularly useful in the CPF method, since it provides a basis for choosing an appropriate CPF. Several specific CPFs have been derived, based on this understanding of coupling, as described in [28]. Such methods may also be useful in problems with bi-directional coupling, such as the combined active/passive suspension presented in [28]. Further work will show when this is the case, and may broaden the range of problems for which this type of approach is appropriate.

Future work may include the extension of this work to cover other controller objectives that can be formulated as specific cases of the general form given here. This controller objective could also be expanded to broaden its generality, by including the Mayer (terminal cost) term and other possible objectives, such as energy-based terms. Physical conditions and specific types of mechanical elements that might exhibit decoupling also merit investigation, as well as the application of this work to develop additional CPFs. It is also important to note that this analysis is limited exclusively to linear systems, and in particular to linear time invariant systems. While many systems fall into this category, and others can be approximated in this fashion, it is a significant limitation. Future work should also include extensions to time-varying linear systems, and to nonlinear systems, in order to expand the applicability of this work.

Acknowledgments

This work was supported in part by NSF Grant #0625060 and by the Automotive Research Center (ARC). This support is gratefully acknowledged.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.mechatronics.2015.05.002.

References

dynamical MEMS acceleration sensor. In: Society of photo-optical

Oldham K, Huang X, Chahwan A, Horowitz R. Design, fabrication and control of
a high-aspect ratio microactuator for vibration suppression in a hard disk

Peters DL, Kurabayashi K, Papalambros PY, Ulsoy AG. Co-design of a MEMS
actuator and its controller using frequency constraints. In: Proceedings of the
ASME dynamic systems and control conferences. Ann Arbor, MI: ASME; 2008
[paper number DSCC 2008-2212].

Shahde VS, Hoo KA. Quantifying the effects of process design on controllability

Shahde VS, Hoo KA. Optimum controller design for a spray drying process.

Citalan-Lara R, Cruz-Villar CA. Multidisciplinary optimization of servodrives
38–43.

Gao W, Zou Y, Sun F. Optimal component sizing for a parallel hybrid bus based
on dynamic programming. In: Transportation electrification Asia–Pacific (ITEC

Allison JT, Guo T, Han Z. Co-design of an active suspension using simultaneous

Youcef-Toumi K. Modeling, design, and control integration: a necessary step in

Pavl S, Filipi Z, Fathy H. Computationally efficient combined plant design and
controller optimization using a coupling measure. ASME J Mech Des
2012;134(7).

Fathy H. Combined plant and control optimization: theory, strategies and

Peters DL. Coupling and controllability in optimal design and control. PhD
thesis, University of Michigan, Ann Arbor, MI; April 2010.

Peters DL, Papalambros PY, Ulsoy AG. Sequential co-design of an artifact and
its controller via control proxy functions. In: Proceedings of the 5th IFAC
symposium on mechatronic systems, IFAC, Cambridge, MA; 2010.

Peters DL, Papalambros PY, Ulsoy AG. Control proxy functions for sequential
design and control optimization. ASME J Mech Des 2011;133(9).

Peters DL, Papalambros PY, Ulsoy AG. Sequential co-design of an artifact and

Allison JT. Plant-limited co-design of an energy-efficient counterbalanced

systems based on a modified policy iteration method. IEEE Trans Neural