Optimal Partitioning and Coordination Decisions in Decomposition-based Design Optimization

by

James T. Allison

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) in The University of Michigan 2008

Doctoral Committee:

Professor Panos Y. Papalambros, Chair
Professor Noboru Kikuchi
Professor Romesh Saigal
Associate Research Scientist Michael Kokkolaras
Terrance Wagner, Ford Motor Company
to Ellie, Jonathan, Brian, and Michael
Acknowledgments

I have been very fortunate to study under the masterful guidance of my advisor, Panos Papalambros. I am grateful for his remarkable support throughout my challenges and adventures at the University of Michigan; I have been inspired by his example. It was because of the opportunity to work with him that I chose to come to Michigan, and I undoubtedly made the right choice. I want to thank my dissertation committee for the time and effort they volunteered to guide my dissertation work. I want also to recognize my wife, Natalie, who has labored just as ardently as I toward my graduation, and my extended family and friends, who gave of themselves so that I could realize my ambitions.

Much of my work has been collaborative. Michael Kokkolaras has been a valuable mentor and research collaborator throughout my graduate studies. Thanks to my affiliation with the Optimal Design Laboratory at the University of Michigan, I’ve had fantastic opportunities to work with people from around the world, including Brian Roth, Emanuele Colomba, Guido Karsemakers, Simon Tosserams, David Walsh, and others. I want to thank all of my ODE friends for enriching my experiences, including Ryan Fellini, Erin MacDonald, Jeongwoo Han, Jarod Kelley, Kwang Jae Lee, Kuei-Yuan Chan, Jeremy Michalek, Subroto Gunawan, Marc Zawislak, Eric Rask, Mike Sasena, Bart Frischknecht, and many others. I am grateful to my other friends at the U of M, including Mike Cherry, April Bryan, Natasha Chang, Eduardo Izquierdo, Brian Trease, Ken Pollary, and others.

Many individuals contributed to the electric vehicle design case study. Kwang Jae Lee played an important role in system integration, optimization, and programming. Jeongwoo Han provided the Li-ion battery model, and Jarod Kelley developed the frame design and structural model. Emanuele Colomba helped define chassis design and overall vehicle geometry. Michael Alexander assisted with structural model development. Dushyant Wadivkar, Burit Kitterungsi, and Mikael Nybacka all provided support for the vehicle dynamics model, and Hisashi Heguri generously furnished tire model data.

Many experiences helped prepare me for graduate school. My involvement with the solar car team at the University of Utah not only helped me discover my research interests, but gave me glimpses of the possible. My fellow solar car teammates, including Andy Rahden, Jayme Allred, Tadd Truscott, and Brad Hansen, played a vital role. Eberhard Bamberg, also of the University of Utah, was an important mentor who offered timely direction and
encouraged me to seek the best possible graduate school experience. Dennis Rosier, my high school auto shop teacher, helped ignite my passion for learning, and Corinne Barney, my high school math teacher, inspired me to expand my horizons. My parents offered regular encouragement to live to my potential, and my father provided long hours of math tutoring through my early college years that were key to my academic success.

Finally, I would like to recognize support from the U.S. National Science Foundation, the Automotive Research Center at the University of Michigan, the Rackham Graduate School, and the University of Michigan College of Engineering and Department of Mechanical Engineering.
Table of Contents

Dedication .. ii

Acknowledgments .. iii

List of Tables .. viii

List of Figures .. ix

List of Symbols .. xii

Abstract .. xv

Chapter 1 Decomposition-based Design Optimization 1
 1.1 Engineering System Design .. 2
 1.2 Design Optimization ... 4
 1.3 Decomposition-based Design Optimization .. 8
 1.4 Introductory Example .. 11
 1.4.1 Coordination Decisions .. 13
 1.4.2 Partitioning Decisions .. 15
 1.5 Dissertation Overview .. 16

Chapter 2 Partitioning and Coordination Decisions ... 18
 2.1 Decomposition-based System Design ... 18
 2.1.1 System Consistency .. 20
 2.1.2 System Optimality ... 20
 2.1.3 Distributed Optimization ... 21
 2.2 Decision Framework .. 22
 2.3 System Representation .. 24
 2.3.1 Structural Matrix .. 24
 2.3.2 Design Structure Matrix ... 25
 2.3.3 Other Design Matrices ... 26
 2.3.4 Reduced Adjacency Matrix ... 27
 2.4 Partitioning and Coordination Decision-Making ... 28
 2.4.1 Traditional Decision Techniques .. 29
 2.4.2 Formal Decision Techniques ... 30
 2.5 Summary .. 34
Chapter 6 Extension to Larger Systems
6.1 Evolutionary Algorithms
6.2 Evolutionary Algorithm for Partitioning and Coordination
6.2.1 Partition Genotype Representation
6.2.2 Sequence Genotype Representation
6.2.3 Comparative Examples
6.3 Generalized Truss Design Problem
6.3.1 System Partitioning
6.3.2 Example: Eight-bar Truss
6.3.3 EA Results
6.4 Concluding Comments

Chapter 7 Consistency Constraint Allocation for Augmented Lagrangian Coordination
7.1 Parallel ALC
7.2 Linking Structure Analysis
7.2.1 Consistency Constraint Graphs
7.2.2 Valid Consistency Constraint Graphs
7.2.3 Example Consistency Constraint Graph
7.3 Optimal Partitioning and Coordination Decisions for Parallel ALC
7.4 Example: Electric Water Pump Design Problem
7.5 Concluding Comments

Chapter 8 Electric Vehicle Design
8.1 Vehicle Description
8.2 Powertrain Model
8.2.1 Vehicle Model
8.2.2 Induction Motor Model
8.2.3 Lithium Ion Battery Model
8.3 Vehicle Dynamics Model
8.3.1 Directional Stability
8.3.2 Steering Responsiveness
8.3.3 Quarter-Car Model
8.4 Structural Model
8.5 Mass Distribution and Packaging
8.6 Optimal P/C Decision Results
8.7 Concluding Comments

Chapter 9 Conclusion
9.1 Summary
9.2 Extension of Simultaneous P/C Decision Making
9.3 Contributions
9.4 Future Work

Bibliography
List of Tables

Table

1.1 Experimental results for evaluation sequence variation ... 13
1.2 Experimental results for evaluation sequence and partition variation 16
2.1 Summary of formal partitioning and coordination decision methods 33
3.1 Turbine blade design parameters .. 44
3.2 Design variables for the aircraft family design problem .. 47
3.3 Design constraints for the aircraft family design problem 48
3.4 Analysis functions and design variables for the electric water pump design problem ... 54
3.5 Electric water pump model parameters .. 56
3.6 Optimization results for the electric water pump design problem 68
4.1 ALC solution progress for the air-flow sensor problem ... 98
6.1 Redundancy in \hat{p} partition representation ... 114
6.2 Design parameters and optimal geometry for the 8-bar truss problem 120
8.1 EV design variables .. 144
8.2 EV coupling variables ... 144
8.3 EV design constraint parameters .. 147
8.4 Vehicle model parameters ... 153
8.5 Motor model parameters .. 163
8.6 Vehicle dynamics model parameters .. 172
8.7 Mass distribution and packaging model parameters .. 175
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Sample sequential design process: automotive example</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Illustration of global and local optima in a nonlinear programming example</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Aeroelastic analysis</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>Process for implementing decomposition-based design optimization</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>Dissertation hypothesis: Existence of coupling between partitioning and</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>coordination decisions</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Input and output relationships for a system of analysis functions</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Aspects of partitioning and coordination decisions</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Hypergraph for relationships in Eqs. (2.4)</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Digraph of functional relationships expressed in the DSM</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Vane airflow sensor schematic (after [34])</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Simplified representation of a vane airflow sensor</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>Coupling relationship in airflow sensor analysis</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>GE J-79 turbojet engine turbine blades [57]</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>Turbine blade model schematic</td>
<td>40</td>
</tr>
<tr>
<td>3.6</td>
<td>Turbine blade coupling and functional relationships</td>
<td>43</td>
</tr>
<tr>
<td>3.7</td>
<td>Truss geometry and free-body diagram</td>
<td>49</td>
</tr>
<tr>
<td>3.8</td>
<td>Electrically driven centrifugal water pump [39]</td>
<td>54</td>
</tr>
<tr>
<td>3.9</td>
<td>Analysis interactions in electric water pump model</td>
<td>55</td>
</tr>
<tr>
<td>3.10</td>
<td>Schematic of permanent magnet DC motor</td>
<td>57</td>
</tr>
<tr>
<td>3.11</td>
<td>Section view of DC motor armature</td>
<td>58</td>
</tr>
<tr>
<td>3.12</td>
<td>Schematic of centrifugal water pump</td>
<td>58</td>
</tr>
<tr>
<td>3.13</td>
<td>DC motor thermal resistance model</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>MDF architecture</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>IDF architecture</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>AAO architecture</td>
<td>75</td>
</tr>
<tr>
<td>4.4</td>
<td>Two element coupled system</td>
<td>76</td>
</tr>
<tr>
<td>4.5</td>
<td>System with multiple fixed points</td>
<td>77</td>
</tr>
<tr>
<td>4.6</td>
<td>IDF optimization space visualization</td>
<td>79</td>
</tr>
<tr>
<td>4.7</td>
<td>Coupling relationship in airflow sensor analysis</td>
<td>80</td>
</tr>
<tr>
<td>4.8</td>
<td>Comparison of MDF and IDF solution time as a function of coupling strength</td>
<td>81</td>
</tr>
<tr>
<td>4.9</td>
<td>Comparison of MDF and IDF function evaluations as a function of coupling</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>strength</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Turbine blade coupling and functional relationships</td>
<td>83</td>
</tr>
<tr>
<td>8.16</td>
<td>Battery power output and charge and discharge limits during range test</td>
<td>166</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>8.17</td>
<td>Quarter-car vehicle suspension model</td>
<td>169</td>
</tr>
<tr>
<td>8.18</td>
<td>Sample road profile created using gaussian random number generator and digital filters</td>
<td>171</td>
</tr>
<tr>
<td>8.19</td>
<td>FEA model of the EV frame</td>
<td>173</td>
</tr>
<tr>
<td>8.20</td>
<td>Optimal partitioning and coordination decision results for the EV problem</td>
<td>176</td>
</tr>
</tbody>
</table>
List of Symbols

- Hadamard product
- \(\beta\) method of multipliers penalty function multiplier parameter
- \(\gamma\) method of multipliers penalty function threshold parameter
- \(\pi\) optimal value function for all ALC subproblems
- \(\pi_i\) optimal value function for ALC subproblem \(i\)
- \(\phi\) augmented Lagrangian penalty function
- \(\theta_{ij}\) consistency constraint vector between subproblems \(i\) and \(j\)
- \(\Theta\) consistency constraint matrix
- \(\upsilon_i\) number of subproblems linked by the \(i\)-th external linking variable
- \(\zeta_{ij}\) data persistence metric
- \(a\) vector of all analysis functions for a system
- \(a_i\) \(i\)-th analysis function
- \(\hat{a_i}\) analysis function vector that corresponds to \(\hat{y}_i\)
- \(A\) reduced adjacency matrix
- \(\bar{A}\) subproblem graph adjacency matrix
- \(B_m\) \(m\)-th Bell number
- \(B_{allow}\) maximum allowed subproblem size imbalance
- \(C\) coordination decision problem
- \(c_i\) ATC consistency constraint for subproblem \(i\)
- \(\bar{c}_{ij}\) ALC external consistency constraint between subproblems \(i\) and \(j\)
- \(CM\) correlation matrix
- \(CS\) coordination problem size
- \(G\) set of consistency constraint graphs for all external shared design variables
- \(DSM\) design structure matrix
- \(f\) design objective function
- \(FDT\) functional dependence matrix
- \(g\) inequality design constraint vector
- \(g_i\) inequality design constraint vector for subproblem \(i\)
- \(G_c\) consistency constraint graph
- \(h\) equality design constraint vector
\(\mathbf{h}_{\text{aux}} \) auxiliary equality constraint vector

\(\mathbf{h}_i \) equality design constraint vector for subproblem \(i \)

\(m \) number of analysis functions in a system

\(n \) number of design variables in a system

\(n^s \) stage depth

\(n_{ai} \) number of analysis functions in subproblem \(i \)

\(n_{Pl} \) number of subproblems that share \(i \)-th external shared variable

\(n_{xi} \) number of local design variables in subproblem \(i \)

\(n_{\bar{e}s} \) number of external shared design variables

\(n_{k_{sei}} \) number of consistency constraints for external shared variables in subproblem \(i \)

\(n_{\bar{e}i} \) number of external shared design variables in subproblem \(i \)

\(n_{\bar{e}m} \) approximate number of external shared design variable consistency constraints

\(n_{\bar{y}f} \) number of external feedback coupling variables

\(n_{\bar{y}j} \) number of external feedback coupling variables for subproblem \(i \)

\(n_{yi} \) number of internal coupling variables in subproblem \(i \)

\(n_{ji} \) number of consistency constraints for external coupling variables in subproblem \(i \)

\(n_{zi} \) number external input coupling variables for subproblem \(i \)

\(n^i \) number of subproblems linked by linking variable \(z \)

\(n_z \) number of external linking variables

\(N \) number of subproblems

\(\mathbf{o} \) analysis function sequence vector

\(\mathbf{o}_s \) subproblem sequence vector

\(\hat{\mathbf{o}} \) genotype analysis function sequence vector

\(\mathbf{p} \) partition vector

\(\hat{\mathbf{p}} \) genotype partition vector

\(p_{ij} \) path from vertex \(i \) to vertex \(j \)

\(\mathbf{P} \) partitioning decision problem

\(\mathbf{P/C} \) partitioning and coordination

\(P_i \) subproblem \(i \)

\(\mathbf{RM} \) relation matrix

\(\mathbf{r}_{ij} \) ATC responses from subproblem \(j \) to subproblem \(i \)

\(\mathbf{S}_{ij} \) \(a_i \) selection matrix for \(y_{ij} \)

\(\mathbf{SM} \) structural matrix

\(SS_i \) size of subproblem \(i \)

\(SS_{\text{max}} \) maximum subproblem size

\(\bar{SS}_{\text{max}} \) average maximum subproblem size for each stage
\(t_{ij} \) ATC targets from subproblem \(j \) to subproblem \(i \)
\(v \) linear penalty weights
\(v_i \) linear penalty weights for subproblem \(i \)
\(w \) quadratic penalty weights
\(w_i \) quadratic penalty weights for subproblem \(i \)
\(x \) design variable vector
\(x^* \) optimal design variable vector
\(x_i \) design variables input to \(a_i \)
\(x_{li} \) design variables local to \(a_i \)
\(x_{si} \) shared design variables associated with \(a_i \)
\(\bar{x}_i \) design variables input to subproblem \(i \)
\(\bar{x}_{i(j)} \) copy of \(\bar{x}_i \) local to subproblem \(i \)
\(\bar{x}_{li} \) design variables local to subproblem \(i \)
\(\bar{x}_{si} \) external shared design variables associated with subproblem \(i \)
\(\bar{x}_{ij} \) design variable copies shared between subproblems \(i \) and \(j \), local to subproblem \(i \)
\(\bar{x}_{s\ell_i} \) external shared design variables associated child elements of subproblem \(i \)
\(\hat{x}_i \) internal shared design variables for subproblem \(i \)
\(\mathcal{X} \) set of feasible design points
\(y \) coupling variable vector
\(y_p \) consistent coupling variable vector
\(y_{ij} \) coupling variable vector form \(a_j \) to \(a_i \)
\(\tilde{y}_i \) external coupling variables input to subproblem \(i \)
\(\tilde{y}_{ij} \) coupling variable vector from \(P_j \) to \(P_i \)
\(\tilde{y}_{s\ell_i} \) external coupling variables associated child elements of subproblem \(i \)
\(\hat{y}_i \) internal coupling variable vector for subproblem \(i \)
\(z_i \) vector of linking variables associated with \(a_i \)
\(\tilde{z} \) vector of all external linking variables
\(\tilde{z} \) vector of all copies of linking variable \(z \)
\(\tilde{z}_i \) vector of external linking variables associated with subproblem \(i \)
\(\tilde{z}_{ij} \) external linking variables between subproblems \(i \) and \(j \)
\(\tilde{z}_{ai} \) subproblem \(i \) output vector
Abstract

Successful design of complex modern products is a grand challenge for design organizations. The task is becoming increasingly important due to economic competition and concern over safety, reliability, and energy efficiency. Automotive and aerospace products, for example, are composed of numerous interdependent subsystems with a level of complexity that surpasses the capability of a single design group. A common approach is to partition complex design problems into smaller, more manageable design tasks that can be solved by individual design groups. Effective management of interdependency between these subproblems is critical, and a successful design process ultimately must meet the needs of the overall system. Decomposition-based design optimization techniques provide a mathematical foundation and computational tools for developing such design processes. Two tasks must be performed so that decomposition-based design optimization can be used to solve a system design problem: partitioning the system into subproblems, and determining a coordination method for guiding subproblem solutions toward the optimal system design. System partition and coordination strategy have a profound impact on the design process. The effect of partitioning and coordination decisions have been studied independently, while interaction between these decisions has been largely ignored. It is shown here that these two sets of decisions do interact: how a system is partitioned influences appropriate coordination decisions, and vice versa. Consequently, addressing partitioning and coordination decisions simultaneously leads to improved system design processes. The combined partitioning and coordination decision problem is a difficult combinatorial problem. An evolutionary algorithm that solves this decision problem effectively is presented. The set of all partitioning and coordination options for a specific formulation framework, augmented Lagrangian coordination (ALC), is derived, and a method for choosing Pareto-optimal solutions from amongst these options is described. Concepts and techniques are demonstrated using several engineering example problems. A detailed model for an electric vehicle design problem is presented that considers three vehicle systems: powertrain, chassis, and structure, and partitioning and coordination decisions for this problem are analyzed.