Optimal Design of Multistation Assembly Systems

by

Zhijun Li

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) in The University of Michigan 2006

Doctoral Committee:
Professor Panos Y. Papalambros, Co-Chair
Associate Research Scientist Michael Kokkolaras, Co-Chair
Professor Shixin Jack Hu
Professor Jianjun Shi
To my family,
Yi, Henglong, Zhifang, Yifei, Kaiping, and Renhua,
who made all of this possible, for their endless encouragement and patience.
TABLE OF CONTENTS

DEDICATION ................................................................. ii
ACKNOWLEDGEMENTS .................................................. iii
LIST OF FIGURES .......................................................... ix
LIST OF TABLES ............................................................ xii
LIST OF APPENDICES ..................................................... xiii

CHAPTER

I. Introduction .............................................................. 1

1.1 Multistation Assembly Systems ................................. 1
  1.1.1 Multistation Assembly System and Its Components .... 2
  1.1.2 Multistation Assembly System Models .................. 4
  1.1.3 Multistation Assembly System Design .................. 6
1.2 Literature Review and Motivation .............................. 8
  1.2.1 Tolerance Allocation ....................................... 8
  1.2.2 Fixture Layout Design .................................... 13
  1.2.3 Integrated Design ......................................... 19
1.3 Objectives ........................................................... 22
1.4 Outline ............................................................... 26

II. Product and Process Tolerance Allocation ....................... 27

2.1 Problem Description ................................................ 27
2.2 Manufacturing Models ............................................. 29
  2.2.1 Variation Propagation Models ......................... 30
  2.2.2 Tolerance-variation Models ......................... 33
  2.2.3 Cost-tolerance Relations .............................. 35
2.3 Design Models ...................................................... 37
  2.3.1 All-in-one Problem Formulation ...................... 37
  2.3.2 Analytical Target Cascading Problem Formulation . 39
APPENDICES .................................................. 117
BIBLIOGRAPHY ............................................... 122
ABSTRACT

Optimal Design of Multistation Assembly Systems

by

Zhijun Li

Co-Chairs: Panos Y. Papalambros and Michael Kokkolaras

This dissertation studies tolerance allocation, fixture layout optimization, and the integration of tolerance allocation and fixture layout design, for multistation assembly systems. System cost, final product quality, and system robustness are three attributes of major importance considered in these systems. Accordingly, single objective and multiobjective problems are formulated and solved for design decisions on product tolerances, process tolerances, and fixture locating positions.

Little work has been done for tolerance allocation in compliant assembly systems, even though compliant assemblies are widely used in manufacturing industries. By modeling the compliant multistation assembly as a hierarchical manufacturing process, the analytical target cascading methodology is applied to product and process tolerance allocation for assessing the feasibility of multilevel optimization strategies. The manufacturing models and design methodologies are demonstrated using vehicle side frame assembly example. Cost-driven and quality-driven tolerance allocation
problems are formulated to minimize system cost and improve final product quality, respectively. The obtained results demonstrate a tradeoff between cost and quality and the allocation schemes for tolerances.

The fixture layout design for multistation assembly systems addresses the variation propagation and interactions among stations to improve the system robustness. Previous research focused on rigid systems; these methods are not applicable to compliant multistation assembly systems. Three key aspects of the compliant multistation fixture layout design are addressed: a sensitivity index definition, a selection of design variables for fixture locations, and an appropriate optimization algorithm enabling the integration with finite element analysis tools. The methodologies are demonstrated using a compliant vehicle side frame assembly example.

To consider tolerance allocation and fixture layout design simultaneously, a general framework is proposed to address the interactions of the aforementioned optimization processes and to quantify their integrated effects on relations among system cost, final product quality, and system robustness. A nested optimization strategy is applied to improve the efficiency of the optimization processes and to increase the accuracy of the results. The demonstrated tradeoffs between system cost and robustness and between product quality and robustness make it necessary to define evaluation criteria for multistation assembly systems in order to ensure best product quality, system robustness, and minimum cost.