A QUANTIFICATION OF PROPORTIONALITY AESTHETICS
IN MORPHOLOGICAL DESIGN

by

Hyoung-June Park

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Architecture)
in The University of Michigan
2005

Doctoral Committee:
Professor Panos Y. Papalambros, Co-Chair
Associate Professor Athanassios Economou, Co-Chair, Georgia Institute of Technology
Professor Jean D. Wineman
Professor Jong-Jin Kim
“because we look not at what can be seen but at what cannot be seen; for what can be seen is temporary, but what cannot be seen is eternal.” (II Corinthians 4:18)

To my parent, my children, and my beloved wife Sang-Hee for their faith in the LORD
ACKNOWLEDGMENTS

This work is the fruit of the convoluted efforts among sincere intellectuals in the search for the form of beauty. My deepest thanks go to Professor Panos Y. Papalambros, College of Engineering and College of Architecture at the University of Michigan, who reminds me of what I must cherish the most during this academic journey, which is “Passion.” As my advisor and teacher, he guided me to complete this work with his invaluable inspiration, criticism, and suggestions. Professor Panos Y. Papalambros provided me with a role model as a person and as a professor. I wish to thank as well Professor Athanassios Economou, College of Architecture at Georgia Institute of Technology, for his scholarship and the depth of knowledge in the history and theory of architectonics. As my advisor, his intellectual challenges broadened and deepened my understanding in this work. At the final stage of this research, Professor Jean D. Wineman, College of Architecture at the University of Michigan, nurtured me with her encouragement and gave me a vision of this work. For her wisdom and patience, I would like to thank her. Also, I would like to thank Professor Jong-Jin Kim, College of Architecture at the University of Michigan, for his constructive advice, which allowed me to maintain pluralistic viewpoints in this work. I would like to thank late Prof. Emmanuel-George Vakaló for leading me to start this journey.

My thanks are also due to my colleagues in the Optimal Design Laboratory (ODE) at the University of Michigan, especially, James Allison, Kuei-Yuan Chan, Jeong-Woo Han and Dr. Jeremy Michaleck. They supported me with their specialties in the area of design optimization. I would like to thank Max Zain for his generous support during my time at the Center for Professional Development at the University of Michigan. And,
I would like to thank the Architectural Program for giving me the opportunity to teach several undergraduate courses as well as financial support.

I am most indebted to my parents Jae-Kyu Park and Joung-Suk Kim for their love and sacrifice during these years. I would like to thank my children Eun-Young and Ye-Young for their love and tolerance. Finally, and most of all, I would like to thank my wife Sang-Hee Lee for her being with me.
TABLE OF CONTENTS

DEDICATION... ii

ACKNOWLEDGEMENTS .. iii

LIST OF FIGURES ... ix

LIST OF TABLES ... xiii

ABSTRACT..xv

CHAPTER 1 INTRODUCTION...1
 1.1 Prelude ..1
 1.2 A Quantifiable Aesthetic Principle ...2
 1.3 Scope and Limits of the Dissertation ..3
 1.4 Outline of the Dissertation ..4

CHAPTER 2 HUMANITAS, BEAUTY AND MORPHOLOGY8
 2.1 Introduction..8
 2.2 Design Machine as an Assistant ..12
 2.3 Humanitas ..17
 2.4 Beauty ..18
 2.4.1 Beauty in Architecture ..18
 2.4.2 Previous Research on Proportion ..22
 2.4.3 Measure of Beauty ..32
 2.5 Morphology...35
 2.6 Summary...37
CHAPTER 3 QUANTIFICATION OF AESTHETICS ..39

3.1 Introduction ..39
3.2 Measuring, Counting, and Computing ..40
3.3 Proportionality ..45
 3.3.1 Definition ..46
 3.3.2 Characters ..50
3.4 A Quantification of Aesthetics ..58
 3.4.1 Design Optimization and the Aesthetic System58
 3.4.2 A Quantification of Proportionality Aesthetics62
 3.4.2.1 Computation of Proportionality ...63
 3.4.2.2 Design Rules and Design Variables ..68
 3.4.2.3 Mathematical Models ...70
 3.4.2.4 Receptors and Effectors ...75
3.5 Summary ..75

CHAPTER 4 HERMES ..76

4.1 Introduction ...76
4.2 Hermes in Analysis ...78
4.3 Hermes in Synthesis ...81
4.4 Issues Relevant to the Study of Proportionality Analysis87
 4.4.1 Classification with Factor Analysis ..87
4.5 Issues Relevant to the Study of Proportionality Synthesis94
 4.5.1 Morphological Transformation in Synthesis ...94
 4.5.2 Combinatorial Search in Proportionality Synthesis97
 4.5.2.1 Complete Search ...99
 4.5.2.2 Genetic Algorithms (GA) in Search ..99
4.6 Summary ...104

CHAPTER 5 PROPORTIONALITY ANALYSIS OF PALLADIO’S BUILDINGS ...105

5.1 Palladio and his “Quattro Libri dell’Architettura”105
5.2 Proportionality Analysis ...107
 5.2.1 Input ...108
 5.2.2 Computation ...110
 5.2.3 Output ...111
5.3 Review of the Results of Proportionality Analysis.................................113
 5.3.1 Statistical Studies...113
 5.3.2 Villa Trissino and Villa Almerico..119
 5.3.3 Proportionality on Morphological Structure.................................124

5.5 Summary...128

CHAPTER 6 PROPORTIONALITY SYNTHESIS BASED ON PALLADIO’S VILLA ALMERICO (“LA ROTONDA”)..........................130
 6.1 Palladio’s Villa Rotonda...132
 6.2 Design Rules and Design Variables ..134
 6.3 Proportionality Analysis ..146
 6.4 Mathematical Models..151
 6.4.1 Input Variables..151
 6.4.2 Constraints ..154
 6.4.3 Objective Functions ..155
 6.4.4 Penalty Functions..159
 6.4.5 Optimization Method...159
 6.4.6 Output ...160
 6.5 Receptors and Effectors ..163
 6.5.1 Optimization Environment..163
 6.5.2 Graphic Representation Environment.......................................167
 6.6 Review of the Results of Proportionality Synthesis168
 6.6.1 Optimized Villa Rotonda ..168
 6.6.1.1 Variation of Existing Proportionalities......................168
 6.6.1.2 Variation of the Diameter of Central Hall172
 6.6.1.3 Variation of the Width of Front & Rear Hallway......175
 6.6.2 Descendants of Villa Rotonda ..177
 6.7 Summary...183

CHAPTER 7 PROPORTIONALITY SYNTHESIS BASED ON MONDRIAN’S “COMPOSITION WITH RED, YELLOW, AND BLUE”185
 7.1 Mondrian’s “Composition with Red, Yellow, and Blue” (1930)186
 7.2 Design Rules and Design Variables..188
 7.3 Proportionality Analysis ..192
 7.4 Mathematical Models..194
 7.4.1 Input Variables..195
 7.4.2 Constraints ..196
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.3</td>
<td>Objective Functions</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Output</td>
</tr>
<tr>
<td>7.5</td>
<td>Receptors and Effectors</td>
</tr>
<tr>
<td>7.6</td>
<td>Review of the Results of Proportionality Synthesis</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Optimized Composition with Red, Yellow, and Blue</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Descendants of Composition with Red, Yellow, and Blue</td>
</tr>
<tr>
<td>7.7</td>
<td>Summary</td>
</tr>
<tr>
<td>8.1</td>
<td>Contributions of this Dissertation</td>
</tr>
<tr>
<td>8.2</td>
<td>A Design Machine</td>
</tr>
<tr>
<td>8.3</td>
<td>Research in Architecture</td>
</tr>
<tr>
<td>8.4</td>
<td>Education in Design</td>
</tr>
<tr>
<td>8.5</td>
<td>Architectural Practice and Other Disciplines</td>
</tr>
<tr>
<td>8.6</td>
<td>Future Research</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Multi-objective Functions</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Stylization</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Relation between Proportionality and Symmetry</td>
</tr>
<tr>
<td>8.6.4</td>
<td>Human Brain Reaction to Proportionality</td>
</tr>
<tr>
<td>8.7</td>
<td>Epilogue</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure

2.1.1 A schematic section through the human eye ..8
2.1.2 Human to human ..9
2.1.3 A desired communication between human and machine11
2.2.1 Human and a drafting tool ...12
2.2.2 Human and a design assistant ..13
2.2.3 A postulated structure for design algorithm ...13
2.2.4 Two diagrammatic representations for design machines14
2.2.5 Design machines ..14
2.2.6 Partial order set of parts used for the generation of design15
2.2.7 An innovative dome design ...16
2.4.2.1 Regulating lines and Modular ...24
2.4.2.2 Frank Lloyd Wright’s project for Ralf Jester House25
2.4.2.3 The variety of the instruments for the study of proportion30
2.4.3.1 Comparison graph of rectangle preference ..34
3.2.1 The incommensurable magnitudes ...41
3.2.2 Various geometric relations ...42
3.2.3 Proportionality 2 ..42
3.2.4 Proportionalities 1 and 3 ..43
3.2.5 Proportionalities 4, 5 and 6 ..44
3.2.6 Proportionalities 7, 8, 9, 10 and 11 ...45
3.3.1.1 27 possible combinations ...47
3.3.1.2 11 proportionalities and their properties ..48
3.3.2.1 The progressive growth of the 11 proportionalities ...51
3.3.2.2 A visual representation of Proportionalities 2, 7, 10, and 1156
3.3.2.3 The visual comparisons of the 11 proportionalities ...57
3.4.1.1 A block diagram representation of a system ...59
3.4.1.2 A postulated structure for a design algorithm ...60
3.4.1.3 A proposed structure of design in aesthetics ...61
3.4.2.1.1 A partial code of the algorithm ..65
3.4.2.2.1 Various interpretations ..68
3.4.2.2.2 Design rules and design variables ..69
3.4.2.3.1 An input variable y_i ..71
3.4.2.3.2 Morphological variations with $y_i = 6 \ (V_p = 125\%)$73
3.4.2.3.3 Morphological variations with $y_i = 7 \ (V_p = 50\%)$73
3.4.2.3.4 Morphological variations with $y_i = 8 \ (V_p = 50\%)$73
3.4.2.3.5 Morphological variations with $y_i = 9 \ (V_p = 25\%)$74
3.4.2.3.6 The comparison between the given design artifact and the optimum
design artifact...74
4.2.1 Villa Emo...78
4.2.2 The structure of analysis component of Hermes in AutoCAD.......................80
4.2.3 The outputs of the analysis in two different formats81
4.3.1 The structure of the synthesis component of Hermes......................................82
4.3.2 Examples of the output of the synthesis ...84
4.3.3 Screen captures of the optimization process..85
4.3.4 Receptors in proportionality synthesis..86
4.4.1.1 The example of factor rotation...91
4.5.1.1 Different faces produced by assigning varying dimensions to
the intervals of the superimposed grid..95
4.5.1.2 The transformations of fishes by the method of
rectangular coordinates...95
4.5.1.3 Rectangular plan transformations...96
4.5.1.4 Morphological transformations with genetic programming97
4.5.2.2.1 Crossover and mutation...101
4.5.2.2.2 A pseudo code of a simple genetic algorithm.......................................101
4.5.2.2.3 Partial MATLAB codes of a fitness function...102
4.5.2.2.4 A simple genetic algorithm coded in MATLAB.....................................103
5.2.1.1 Proportionality analysis input..110
5.3.1.1 Abstract plans with their proportionality value ..116
5.3.1.2 The presence of 11 proportionalities on the 38 plans.................................117
5.3.2.1 Villa Trissino and Villa Rotonda...120
5.3.2.2 Abstract plans with their score in Factor 1 ...121
5.3.2.3 The presence of 11 proportionalities in 4 buildings....................................123
5.3.2.4 The presence of 11 proportionalities in Villa Trissino and Villa Rotonda.....123
5.3.3.1 Proportionality patterns on the abstract plans of
Villa Trissino and Villa Rotonda..125
5.3.3.2 Proportionalities 4 and 10 on the plans of Villa Trissino and Villa Rotonda127
6.1 The descendants of Villa Rotonda from the close relatives
to the distant one..131
6.1.1 Villa Rotonda in the second book..133
6.2.1 Incommensurables roots in Villa Rotonda..135
6.2.2 A circle at the center of Villa Rotonda...135
6.2.3 $\sqrt{3}$ and $\sqrt{2}$ in the plan of Villa Rotonda..136
6.2.4 RCH, WLR, LSR, LLR and WSR ...137
6.2.5 $HWLR, DCH$ and WLR ..138
6.2.6 $HWLR, DP$, and WSR ..139
6.2.7 Central hall, large and small room, hallway left & right side and
depth of portico..139
6.2.8 HCH and DCH..140
6.2.9 Width, length, and height of large and small room.......................................140
6.2.10 Height of large and small rooms..141
6.2.11 Height of column (HC) ... 142
6.2.12 Other design components .. 143
6.2.13 The 32 design variables ... 146
6.3.1 Proportionality and visual reference of three prototypes of the original Rotonda ... 148
6.3.2 Proportionality in the plan prototype of Villa Rotonda 148
6.3.3 Visual reference of mass model prototype of Villa Rotonda 149
6.3.4 Visual reference of detailed model prototype of Villa Rotonda 150
6.4.1.1 Input variables under different design conditions on a user-interface of Hermes ... 152
6.4.2.1 Basic constraints .. 154
6.4.2.2 A partial code of conditional statement in mathematical relations 155
6.4.3.1 Detailed model prototype under three design conditions 156
6.4.3.2 A partial code of the objective functions for hard design condition 157
6.4.6.1 A screen capture of the input setting and its optimization process on a user-interface ... 161
6.4.6.2 An outcome in a text file .. 162
6.4.6.3 Visual representation of plan prototype ($V_p = 20\%$) 162
6.4.6.4 Visual representation of mass model prototype ($V_p = 17.8\%$) 162
6.4.6.5 Visual representation of detailed model prototype ($V_p = 3.5\%$) 163
6.5.1.1 User-interface under hard design condition with the genetic algorithm 164
6.5.1.2 Initial stage in MATLAB .. 165
6.5.1.3 Evaluation stage in MATLAB ... 165
6.5.1.4 Representation stage in MATLAB .. 166
6.5.2.1 Graphic representation environment in AutoCAD and proportionality analysis ... 167
6.6.1.1 Visual representations of (i, j, k, p, q, r) in plan prototype under hard design condition ... 170
6.6.1.2 Visual representations of (i, j, k, p, q, r) in mass model prototype under hard design condition ... 171
6.6.1.3 Visual representations of (i, j, k, p, q, r) in detailed model prototype under hard design condition ... 172
6.6.1.2.1 Comparison in plan prototype .. 174
6.6.1.2.2 Comparison in model prototype ... 175
6.6.1.2.3 Comparison in detailed model prototype .. 175
6.6.1.3.1 Variations of $HWFR$ in plan prototype .. 176
6.6.1.3.2 Three prototypes with $HWFR = 9$... 176
6.6.2.1 Palladio’s Villa Rotonda ... 178
6.6.2.2 Jefferson’s Rotunda and Lord Burlington’s Chiswick House 179
6.6.2.3 The optimization process for Villa Papalambros 179
6.6.2.4 The alternatives of Villa Papalambros ... 180
6.6.2.5 Villa Papalambros ... 180
6.6.2.6 The alternatives of Villa Economou .. 181
6.6.2.7 Villa Economou ... 181
6.6.2.8 Villa Wineman .. 182
6.6.2.9 Villa Kim .. 182
7.1 A scanned image of Mondrian’s “Composition with Red, Yellow, and Blue” ...185
7.2.1 The reconstructed geometric representation with 36 design variables that have the dimensions (cm) of the original painting ..189
7.2.2 The relationships among design variables of the original painting189
7.2.3 Design rules and design variables ... 191
7.2.4 Seven rectangular shapes and a polygon ..191
7.3.1 Proportionality and visual index of the original painting in line and color drawing ...192
7.4.2.1 The visual representations of the basic constraints196
7.4.2.2 Sample outcomes ...197
7.4.2.3 The visual representations of the additional constraints197
7.4.2.4 A partial code for the conditional mathematic relations in a soft design condition ..198
7.4.3.1 The relationships among the mathematical models199
7.4.3.2 A partial code of the objective function in hard design condition200
7.4.4.1 A screen capture of the input settings and its evolutionary optimization process on a user-interface ...203
7.4.4.2 An outcome in a text file “GAsoft2t0p40g50mondoutsample.txt”204
7.4.4.3 Examples of output ...204
7.5.1 The User-interface of the computational model with genetic algorithm205
7.5.2 Initial stage in MATLAB ...206
7.5.3 Evaluation stage in MATLAB ...206
7.5.4 Representation stage in MATLAB ...207
7.5.5 Proportionality analysis in AutoCAD ...207
7.6.1.1 The outcomes with similar morphological structure under different design conditions ...209
7.6.2.1 The descendants in line and color drawing ..210
7.6.2.2 Input setting for Composition Papalambros ..211
7.6.2.3 Various candidates selected from the animation ...212
7.6.2.4 Composition Papalambros ...213
7.6.2.5 Composition Economou ..213
7.6.2.6 Composition Wineman ..214
7.6.2.7 Composition Kim ...214
8.3.1 Palladian villas ..220
8.3.2 Optimized Composition with Red, Yellow, and Blue221
LIST OF TABLES

Table

2.4.3.1 Rectangle proportion preference ... 33
2.4.3.2 Weber’s fraction ... 34
3.3.1.1 11 proportionalities and their properties ... 48
3.3.2.1 The comparison between proportionality intersections and the Cherished ratios ... 55
4.4.1.1 Correlation matrix .. 89
4.4.1.2 Total variance of the components with eigenvalues from SPSS 90
4.4.1.3 Matrix of 5 extracted components from SPSS .. 90
4.4.1.4 Rotated component matrix from SPSS ... 92
4.4.1.5 Factor scores of 38 plans ... 93
5.2.1.1 Input dataset .. 109
5.2.3.1 Output of proportionality on Villa Emo ... 111
5.3.1.1 Individual proportionality value P_k and V_p of the 38 plans within tolerance 0% ... 114
5.3.1.2 The 38 plans with their proportionality value V_p within tolerance 0% 115
5.3.1.3 Plans that have high score on each factor ... 116
5.3.1.4 Five factors and their proportionalities from SPSS 119
5.3.2.1 The input dimensions for the 6 plans in Factor 1 ... 122
5.3.2.2 Individual proportionality value P_k on the 6 plans in Factor 1 122
5.3.2.3 Factor scores of 6 plans in Factor 1 .. 122
6.2.1 Design components and their dimensions of Villa Rotonda 134
6.2.2 Possible heights from the second term of 11 proportionalities 141
6.2.3 Six proportionalities found from Villa Rotonda .. 143
6.2.4 The 38 design variables with the original dimensions and numbers of Villa Rotonda ... 145
6.3.1 Three prototypes and their design components and variables 147
6.3.2 Numerical reference of Villa Rotonda .. 150
6.4.1.1 Input variable and design conditions .. 153
6.6.1.1.1 Palladio’s choice of six proportionalities in his Villa Rotonda 169
6.6.1.1.2 Proportionality value V_p with proportionality (i, j, k, p, q, r) in plan prototype under hard design condition ... 170
6.6.1.1.3 Proportionality value V_p with proportionality (i, j, k, p, q, r) in mass model prototype under hard design condition 171
6.6.1.1.4 Proportionality value V_p with proportionality (i, j, k, p, q, r) in detailed model prototype under hard design condition 171
6.6.1.2.1 Variations of DCH under hard design condition 173
6.6.1.2.2 Variations of DCH under medium design condition ..174
6.6.1.2.3 Variations of DCH under soft design condition ..174
6.6.1.3.1 Variations of $HWFR$ under soft design condition..176
6.6.2.1 Numerical comparisons between the variations and the original villa183
7.3.1 Individual proportionality value P_k within 0% tolerance.................................192
7.3.2 V_p and P_k within 0 and 2.9% Tolerance ..194
7.4.1.1 Input variable and design conditions ...195
7.6.1.1 Numerical comparisons between the original and its variations208
7.6.2.1 Numerical comparisons between the variations and Mondrian’s original composition...215
ABSTRACT

A QUANTIFICATION OF PROPORTIONALITY AESTHETICS IN MORPHOLOGICAL DESIGN

by

Hyoung-June Park

Co-Chairs: Panos Y. Papalambros and Athanassios Economou

The study of beauty in morphological design is conducted using a computer-based system for quantification of aesthetics in the presence of proportionality. The system is formulated, implemented, and tested in the analysis and synthesis of various design artifacts.

With an assumption that universal aesthetic principles exist and are quantifiable, proportionality (known as the theory of means) is proposed as the apparatus for this research. When the computation of proportionality is encoded as quantifiable criteria into a design machine, in turn, a quantification of proportionality aesthetics is defined as the "mechanization" of the human process in selecting an “optimum” design. In this quantification, a description of a given design artifact consists of the dimensions of the
artifact. The dimensions are used to compute proportionality values. These values are assigned to the given design artifact as its reference characteristic. When an artifact has the best reference characteristic, it is selected as the optimum among the alternatives generated from the given artifact using a design optimization methodology.

This quantification process is implemented computationally in an analysis and synthesis system called Hermes. Hermes performs optimization using genetic algorithms. The analysis component of Hermes is designed as a plug-in application for AutoCAD and is tested with a group of 38 buildings designed by the Italian architect Palladio to discover the extent of proportionality rules used in his work. Factor analysis is employed for the classification of the results. The synthesis component is written in MATLAB and in AutoLISP. This synthetic function is tested with Palladio’s Villa Rotonda and Mondrian’s “Composition with Red, Yellow, and Blue.” The program provides a better understanding of the master’s usage of proportionality in the design. In return, it allows exploration of how these designs may change by varying the presence of proportionality.

The theoretical and computational results obtained using Hermes suggest that quantification of proportionality aesthetics is feasible and useful as an aesthetic measure for analyzing existing and creating new works of art. Providing an opportunity to begin to explore aesthetic pleasure, this approach may address a variety of issues about aesthetics in design, and about design in general.