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ABSTRACT

While automobiles provide society with an unprecedented amount of mobility,

motor vehicle crashes are a leading cause of injury and death worldwide. Design-

ing safer vehicles is a priority of governments and automakers alike; however, other

requirements such as increased fuel economy and performance have driven designs

in conflicting directions. Because society benefits from reductions in traffic injuries

and fuel consumption, governments impose standards and incentives for safer and

more fuel efficient vehicles. One form of incentive is a consumer-information test,

such as a New Car Assessment Program (NCAP), using standardized crash tests in

various impact directions to help customers compare the crashworthiness of different

automobiles. Automakers strive to perform well on these tests by optimizing vehicle

designs to the specified scenarios. Another type of standard uses injury thresholds to

ensure a minimum level of protection, such as the U.S. Federal Motor Vehicle Safety

Standards and the U.S. Army ground vehicle blast protection criteria.

This dissertation uses these standards to examine the impact of safety optimiza-

tion formulations and tradeoffs on vehicle design and competing objectives. Physics-

based modeling is used to simulate crash or blast events, and computational designs

of experiments are conducted with the resulting data fit to response surfaces. Single-

and multi-objective optimization formulations are developed to demonstrate relation-

ships between occupant protection and vehicle weight for civilian vehicle crashes and

military vehicle blast events. Using these formulations, the civilian case study is

extended to understand the impact of the frontal NCAP test speed on injuries in

frontal on-road crashes, as well as the effect safety considerations have on manufac-
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turer profit-maximizing decisions and consumer behavior in a competitive market.

The military case study is also expanded to demonstrate how high vehicle weight and

fuel consumption increase the need for convoys, posing additional injury risks to per-

sonnel and thereby making fuel economy a safety objective in a casualty-minimization

formulation.

The results of these studies demonstrate the need for designers and engineers to

consider safety in new, more holistic ways, and this dissertation establishes a new

type of design thinking that can contribute to decreased vehicle-related injuries while

also accounting for other objectives.
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