Topology Considerations in Hybrid Electric Vehicle Powertrain Architecture Design

by

Alparslan Emrah Bayrak

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
(Mechanical Engineering)
in The University of Michigan
2015

Doctoral Committee:
Professor Panos Y. Papalambros, Chair
Research Engineer Kukhyun Ahn, Ford Motor Company
Professor James S. Freudenberg
Group Manager Madhu Raghavan, General Motors Corp.
Professor Jeffrey L. Stein
For all the people
I would like to gratefully acknowledge General Motors Corp. and the Automotive
Research Center, a US Army Center of Excellence at the University of Michigan for
funding my research activities in the Optimal Design (ODE) Lab.

I would like to give my special thanks to Prof. Panos Papalambros for his support
and guidance throughout my research in the ODE Lab. In the college I learned that
science was not just generating new knowledge but also communicating it. Panos
helped me a lot to develop many skills to do that more effectively by challenging and
correcting me all the time. There is still so much to learn.

The other person whom I owe so much is Prof. Gullu Kiziltas Sendur. She was
the one who taught me the first steps to moving in the path of academia. Her endless
support was an important factor for me to come to the University of Michigan. I can
never repay her.

I would also like to thank Dr. Max Yi Ren and Dr. Namwoo Kang for their help
at certain parts of the dissertation. Without their help, this dissertation would take
much longer to finalize than it was supposed to. Additionally, it was a privilege to
be a part of the ODE family. The friendship and all the fun we had together in the
ODE Lab were so valuable to me.

Finally, I would like to thank my family. Looking back to all the difficulties
we overcame together, receiving a PhD degree from the University of Michigan was
beyond my imagination. Their unconditional love, which I believe is the most precious
feeling in the world, was what kept me going.
TABLE OF CONTENTS

DEDICATION ... ii
ACKNOWLEDGEMENTS ... iii
LIST OF FIGURES .. vii
LIST OF TABLES .. xi
LIST OF APPENDICES .. xiii
ABSTRACT ... xiv

CHAPTER

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Introduction</td>
<td>1</td>
</tr>
</tbody>
</table>
| 1.1 | Problem Definition | 2
| 1.1.1 | Classes of Design Problems | 2
| 1.1.2 | Hybrid Electric Vehicle Architecture | 5
| 1.1.3 | HEV Powertrain Control | 9
| 1.2 | Related Work | 11
| 1.2.1 | Structural Design Synthesis | 12
| 1.2.2 | Electrical Circuit Design | 14
| 1.2.3 | Chemical Structure Design | 14
| 1.2.4 | Automotive Powertrain Configuration Design | 15
| 1.3 | Summary | 16
| 1.4 | Dissertation Contributions | 17
| 1.5 | Dissertation Overview | 18 |

| II. | Literature Review | 19
| 2.1 | Automotive Powertrain Architecture Design | 19
| 2.1.1 | Automatic Transmission Design for Gasoline Vehicles | 20
| 2.1.2 | Hybrid Architecture Design | 23
| 2.2 | System Architecture Design Using Evolutionary Algorithms | 26 |
6.2 Architecture Complexity ... 106
6.3 Architecture Search .. 112
 6.3.1 Search Algorithm .. 112
6.4 Case Study Illustration Results 114
6.5 Case Study 1 .. 117
6.6 Case Study 2 .. 120
6.7 Case Study 3 .. 122
6.8 Summary ... 125

VII. Simultaneous Architecture and Sizing Design 126

 7.1 Problem Formulation ... 127
7.2 Decomposition-Based Solution Strategy 129
 7.2.1 Single-mode HEV Architecture Design Problem 132
7.2.2 Multi-mode HEV Architecture Design Problem 134
7.3 Results ... 136
 7.3.1 Single-mode 1-PG Architecture Design 137
 7.3.2 Single-mode 2-PG Architecture Design 142
 7.3.3 Multi-mode 1-PG Architecture Design 144
 7.3.4 Multi-mode 2-PG Architecture Design 145
 7.3.5 Discussion .. 146
7.4 Summary ... 148

VIII. Conclusions .. 150

 8.1 Summary ... 150
8.2 Contributions .. 152
8.3 Limitations and Future Work 153

APPENDICES ... 156

BIBLIOGRAPHY .. 173
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Illustration of design terminology</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Topology of an abstract system to achieve a desired output using a catalog shown on Figure 1.1</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Two DC/DC converters of different architectures</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Series Hybrid Configuration</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Parallel Hybrid Architecture</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>Power-Split Hybrid Architecture</td>
<td>9</td>
</tr>
<tr>
<td>1.7</td>
<td>Cross section representation of a PG set</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>An example 2-PG system and its conventional and canonical representations given by Chatterjee and Tsai (1996)</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>An example circuit and its bond graph representation given by Fan et al. (2001)</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Stick diagram representation of two architectures</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Lever analogy to analyze a PG set</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Architecture examples</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>Bond graph representation of Toyota Prius architecture with ring to sun gear ratio of ρ ignoring the gear inertias and losses</td>
<td>37</td>
</tr>
<tr>
<td>3.5</td>
<td>Two modes of the architecture shown on Figure 3.3(a). CL1 is only used to obtain a neutral gear instead of a new mode.</td>
<td>41</td>
</tr>
</tbody>
</table>
3.6 Modified bond graph representation of Toyota Prius architecture ... 42
3.7 Violation of simple graph assumption .. 44
3.8 A junction with 5 bonds is equivalently replaced by 3 junctions with 3 bonds each .. 45
3.9 Two replicates generated from the enumeration process. Both graphs result in the same equation sets after assigning the junction type and bond weights ... 48
3.10 All possible six combinations for the bond weight assignment around a 0 junction ... 52
3.11 Bond weight scaling for a 0 to 0 junction connection ... 52
3.12 Four samples among all possible 2-PG driving modes ... 56
3.13 Three modes of the Chevrolet Volt generated by the process .. 57
3.14 All modes of the dual-mode architecture by Ai and Anderson (2005) ... 57
3.15 All modes of the dual-mode architecture by Schmidt (1999a) .. 58
3.16 2-PG modes equivalent to the Toyota Prius and the Chevrolet Volt (with extra final drive) ... 58
4.1 Strategies for combined plant (design) and controller optimization .. 64
4.2 Decomposition of combined single-mode architecture and gear ratio design 69
4.3 Decomposition of combined multi-mode architecture and gear ratio design 70
5.1 All engine and MG operating points satisfying the demand from the drive cycle form a Pareto surface on the space of \dot{m}_f and P_{batt} .. 80
5.2 Representation of a fictitious control problem with an analogy to the shortest path problem starting with state s^0_0 and ending with s^0_N .. 82
5.3 One iteration of the secant method to find the conversion factor corresponding to the target SOC .. 86
5.4 Simulation results for all 1-PG modes with $\rho = 2.6$ and $FR = 3.95$
using the vehicle specifications given in Table 5.1 89

5.5 Optimal configuration obtained for the vehicle specifications given in
Table 5.1 by enumerating all 1-PG designs 90

5.6 Simulation results for all 2-PG modes with $\rho = [2.6; 2.6]$ and $FR = 3.95$
using the vehicle specifications given in Table 5.1 91

5.7 Top three configurations obtained for the vehicle specifications given
in Table 5.1 by enumerating all 2-PG designs 92

5.8 Simulation results for all 1-PG modes with $\rho = 2.24$ and $FR = 2.16$
using the vehicle specifications given in Table 5.4 94

5.9 Top three configurations obtained for the vehicle specifications given
in Table 5.4 by enumerating all 1-PG designs 95

5.10 Simulation results for all 2-PG modes with $\rho = [2.24; 2.24]$ and $FR = 2.16$
using the vehicle specifications given in Table 5.4 96

5.11 Top three configurations obtained for the vehicle specifications given
in Table 5.4 by enumerating all 2-PG designs 97

5.12 Simulation results for all 1-PG modes with $\rho = 2$ and $FR = 5$
using the vehicle specifications given in Table 5.7 98

5.13 Simulation results for all 2-PG modes with $\rho = [2; 2]$ and $FR = 5$
using the vehicle specifications given in Table 5.7 99

5.14 Top three configurations obtained for the vehicle specifications given
in Table 5.7 by enumerating all 2-PG designs 100

5.15 Effects of the parameters on the simulation results obtained for the
architecture in Figure 5.14(a), where “1” represents the original values
$\rho_1 = 2$, $\rho_2 = 2$ and $FR = 5$. ... 102

6.1 Example of a modified bond graph representation and its connectivity
table ... 107

6.2 Two sample connectivity tables and the corresponding clutching so-
lution indicated by red boxes ... 109

6.3 Multiple clutching solutions exist when MG1 and MG2 are identical 110
6.4 Connectivity tables for the example modes in Figure 6.3. The minimum number of clutches required is 3, when the two MGs are identical.

6.5 Three sample connectivity tables and the corresponding clutching solution indicated by red boxes.

6.6 Flowchart of the dual-mode architecture design process.

6.7 Iterations of the search algorithm for a fictitious problem starting with $M_0 = \{8, 1\}$ and converging to $M_4 = \{3, 4\}$ in four iterations. Minimum of each iteration is denoted by a square.

6.8 Initial modes for 1-PG architecture design studies.

6.9 Initial modes for 2-PG architecture design studies.

6.10 Best 1-PG architecture found for Case Study 1.

6.11 Best 2-PG architecture found for Case Study 1.

6.12 Best 1-PG architecture found for Case Study 2.

6.13 Best 2-PG architecture found for Case Study 2.

6.14 Best 2-PG architecture found for Case Study 3.

7.1 Projection of the 4D feasible region to 2D planes.

7.2 Decomposition of combined single-mode architecture and gear ratio design.

7.3 Decomposition of combined multi-mode architecture and gear ratio design.

7.4 Optimal 1-PG architecture obtained by ATC. This is the architecture used in the Toyota Prius.

7.5 Optimal 2-PG architecture obtained by ATC.

7.6 Optimal dual-mode 1-PG architecture obtained by ATC.

7.7 Optimal dual-mode 2-PG architecture obtained by ATC.
LIST OF TABLES

Table

1.1 Existing architectures from literature 8
3.1 List of Bond Graph simplifications 43
3.2 Number of junctions needed for different types of modes 46
5.1 Vehicle specifications used for Case Study 1 88
5.2 Simulation results for the best 1-PG architecture designed for Case Study 1 .. 90
5.3 Simulation results for the top three 2-PG architectures designed for Case Study 1 .. 91
5.4 Vehicle specifications used for Case Study 2 93
5.5 Simulation results for the top three 1-PG architectures designed for Case Study 2 .. 94
5.6 Simulation results for the top three 2-PG architectures designed for Case Study 2 .. 95
5.7 Vehicle specifications used for Case Study 3 97
5.8 Simulation results for the two feasible 1-PG architectures designed for Case Study 3 .. 98
5.9 Simulation results for the top three 2-PG architectures designed for Case Study 3 .. 100
6.1 Architecture specifications for all three case studies 115
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Vehicle specifications used for Case Study 1</td>
<td>117</td>
</tr>
<tr>
<td>6.3</td>
<td>Simulation results of the selected designs for Case Study 1</td>
<td>120</td>
</tr>
<tr>
<td>6.4</td>
<td>Vehicle specifications used for Case Study 2</td>
<td>120</td>
</tr>
<tr>
<td>6.5</td>
<td>Simulation results of the selected designs for Case Study 2</td>
<td>122</td>
</tr>
<tr>
<td>6.6</td>
<td>Vehicle specifications used for Case Study 3</td>
<td>122</td>
</tr>
<tr>
<td>6.7</td>
<td>Simulation results of the selected designs for Case Study 3</td>
<td>123</td>
</tr>
<tr>
<td>7.1</td>
<td>Vehicle specifications used for the case studies</td>
<td>137</td>
</tr>
<tr>
<td>7.2</td>
<td>Results for single-mode 1-PG architecture design by optimizing each configuration separately</td>
<td>138</td>
</tr>
<tr>
<td>7.3</td>
<td>ATC results for single-mode 1-PG architecture design using SQP for the system level problem</td>
<td>139</td>
</tr>
<tr>
<td>7.4</td>
<td>ATC results for single-mode 1-PG architecture design using interior point method for the system level problem</td>
<td>140</td>
</tr>
<tr>
<td>7.5</td>
<td>ATC results for single-mode 1-PG architecture design using GA with 5 generations for the system level problem</td>
<td>141</td>
</tr>
<tr>
<td>7.6</td>
<td>ATC results for single-mode 2-PG architecture design using GA with 5 generations for the system level problem</td>
<td>143</td>
</tr>
<tr>
<td>7.7</td>
<td>ATC results for single-mode 2-PG architecture design using GA with 10 generations for the system level problem</td>
<td>144</td>
</tr>
<tr>
<td>7.8</td>
<td>ATC results for dual-mode 1-PG architecture design using GA with 5 generations for the system level problem</td>
<td>145</td>
</tr>
<tr>
<td>7.9</td>
<td>ATC results for dual-mode 2-PG architecture design using GA with 5 generations for the system level problem</td>
<td>146</td>
</tr>
</tbody>
</table>
LIST OF APPENDICIES

Appendix

A. 1-PG Hybrid and Pure Electric Modes .. 157
B. Selected 2-PG Hybrid and Pure Electric Modes 165
ABSTRACT

Topology Considerations in Hybrid Electric Vehicle Powertrain Architecture Design

by

Alparslan Emrah Bayrak

Chair: Panos Y. Papalambros

Optimal system architecture (topology or configuration) design has been a challenging design problem because of its combinatorial nature. Parametric optimization studies make design decisions assuming a given architecture but there has been no general methodology that addresses design decisions on the system architecture itself. The electrification of vehicles with the introduction of mechatronic devices such as motors and generators to vehicle powertrains has drawn renewed attention to the automotive powertrain architecture optimization problem. Hybrid Electric Vehicle (HEV) powertrains allow various architecture alternatives created by connecting the internal combustion engine, motor/generators and the output shaft in different ways through planetary gear systems. Addition of clutches to HEV powertrains allows changing the connection arrangement (configuration) among the powertrain components during the vehicle operation. Architectures with this capability are referred to as multi-mode architectures while architectures with fixed configurations are referred to as single-mode architectures. Design decisions made on both the powertrain’s component sizes and its configuration have significant impact on the fuel economy and vehicle performance. System architecture optimization requires designing the configuration and sizing si-
multaneously. Additionally, evaluation of an HEV architecture design depends on a power management (control) strategy that distributes the power demand to the engine and motor/generators. Including this control problem increases the complexity of the HEV architecture design problem. Methodologies developed specifically for HEV powertrain architecture design work only when the problem size is significantly reduced by eliminating many architecture design candidates or target only a small portion of the design space of architecture alternatives.

This dissertation focuses on a general methodology to make design decisions on HEV powertrain architecture and component sizes. The representation of the architecture design problem is critical to solving this problem. A new general representation framework capable of describing all architecture alternatives is introduced. Using the representation, all feasible configurations are generated to create a new design space of feasible configurations only. These configurations are used to create single- and multi-mode HEV architectures. The architecture design alternatives are evaluated based on fuel economy, vehicle performance and complexity. Three types of design problems are formulated: (i) single-mode architecture design for given component sizes (ii) multi-mode architecture design for given component sizes (iii) architecture design combining the configuration and sizing. Solution strategies for all three types of design problems are developed. The high complexity of the resulting optimization problem does not allow us to claim true optimality rigorously; therefore, the terms “promising” or “near-optimal” are more accurate in characterizing the results of the optimization studies. Case study results show that different architectures must be designed for different applications. The case studies designing architectures for some available vehicles from the market find the architectures already implemented in these vehicles under some design constraints. Alternative architectures that improve these designs under different design constraints are also demonstrated. Architectures for a new application that is not available in the market are also designed.