Analytical Target Cascading Optimization of an Electric Vehicle Powertrain System

by

Michael J. Alexander

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the University of Michigan 2008

Thesis Committee:
Professor Panos Y. Papalambros, Chair
Dr. Michael Kokkolaras
Dr. Jeongwoo Han
ABSTRACT

Analytical Target Cascading Optimization of an Electric Vehicle Powertrain System

by

Michael J. Alexander

Chair: Panos Y. Papalambros

In optimizing large-scale, complex design systems, decomposition-based methods such as analytical target cascading (ATC) are frequently used to solve these problems. This decomposition introduces consistency constraints, which contain design variables that are shared between adjacent subproblems and thus link them together. In general, this procedure increases the size of an individual subproblem because it consists of variables that are local to the subproblem as well as variables that couple the adjacent subproblems. When the coupling variables are scalar-valued, the problem size does not increase appreciably, and efficient optimization of the system is still feasible. However, when the coupling variables are vector-valued, as is the case for vector-valued functions (VVFs), the problem size can increase dramatically, making optimization of the system inefficient and impractical. Therefore, it is necessary to represent VVF coupling with fewer, surrogate variables that will reduce the problem size while maintaining an acceptable level of fidelity with respect to the original representation.

This study specifically aims at identifying the best VVF reduced representations for maximum and minimum motor torque curves and motor power loss maps produced by an electric vehicle (EV) powertrain system. Three representation techniques, namely radial-basis
function (RBF) neural networks, proper orthogonal decomposition (POD), and hybrid POD/image warping, are investigated, and the first two methods are developed and implemented in an ATC problem formulation. After solving the optimization problems, each VVF reduced representation is assessed in terms of efficiency (design vector dimensionality) and accuracy.

The results from these assessments, as well as from the subsequent optimization problem execution, indicate that neural networks are the best VVF reduced representation for this application as it provides the greatest efficiency with the least approximation error. However, using this technique creates a redundancy between local and coupling variables of the bottom level ATC subproblem. This redundancy implies that the same optimization problem could be solved as an all-in-one (AiO) problem exclusively. Therefore, other VVF reduced representations may be explored. Finally, VVF reduced representation accuracy is more important than its efficiency, since the motor performance information (torque curves and power loss map) significantly impacts the success of the powertrain simulations and hence the optimization solution.
To my family.
ACKNOWLEDGEMENTS

It has been a long, challenging road to the completion of this research, and my success would not have been possible without the guidance, mentorship and support of many of my colleagues. I must first thank my thesis chair, Professor Panos Y. Papalambros, and my committee members, Dr. Michael Kokkolaras and Dr. Jeongwoo Han, for their leadership, expertise, and professional insight in navigating me through my first research experience. Additionally, I am extremely grateful for the assistance provided by two of my lab colleagues, Dr. James Allison and Dr. Han. Dr. Allison graciously imparted much of his prior knowledge on a similar research project, which literally guided me through much of the background and intricacies of this research. Dr. Han was also pivotal in assisting me with many technical issues associated with the implementation of the ATC problem formulations. I also thank my other ODE Laboratory colleagues for their professional support.

I must also give tremendous thanks to my family and my girlfriend, Patience, for all of their emotional support. They never once hesitated to call or email me in the midst of their busy schedules to demonstrate their love and concern, and they often gave me the strength I needed to stay focused and motivated.

Finally, I thank my church family and my bible study brotherhood MOV for their spiritual support throughout my studies. They have always reminded me to “trust in the Lord with all my heart, and lean not to my own understanding” and to maintain my faith in God at all times.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iv

LIST OF TABLES .. viii

LIST OF FIGURES ... ix

CHAPTER I .. 1

INTRODUCTION... 1
 1.1 Literature Review ... 3
 1.2 Thesis Overview... 13

CHAPTER II ... 16

Background of ATC Optimization and AVASIM ... 16
 2.1 Analytical Target Cascading (ATC) Optimization ... 16
 2.2 Accuracy and Validity Algorithm for Simulation (AVASIM) ... 21
 2.3 Summary... 26

CHAPTER III ... 27

Electric Vehicle Powertrain Model.. 27
 3.1 Electric Motor Analysis Model ... 31
 3.1.1 General Characteristics ... 31
 3.1.2 Induction Motor (IM) Model .. 32
 3.1.3 Determination of IM Model Properties .. 33
 3.1.4 Calculation of Torque Curves and Power Loss Map .. 37
 3.2 Battery Size Analysis Model .. 45
 3.2.1 General Characteristics .. 45
 3.2.2 Lithium-Ion Battery Model: Physical Characteristics ... 45
 3.2.3 Calculation of Overall Battery Size and Mass.. 47
 3.3 Mass Distribution and Packaging Analysis Model .. 47
 3.3.1 General Characteristics .. 47
 3.3.2 Calculation of Mass Distribution and Packaging Constraints 48
 3.4 Vehicle Analysis Model .. 51
 3.4.1 General Characteristics .. 51
CHAPTER IV ... 63

VVF Reduced Representations for ATC Optimization of EV Powertrain System 63
4.1 Radial-Basis Function Neural Networks ... 63
4.2 Proper Orthogonal Decomposition (POD) ... 69
4.3 Hybrid POD/Image Warping ... 75
4.4 Summary .. 76

CHAPTER V ... 77

Optimization of EV Powertrain System .. 77
5.1 ATC Problem Formulations ... 77
5.1.1 General Problem Formulation ... 77
5.1.2 Neural Networks Problem Formulation ... 84
5.1.3 POD Problem Formulation .. 86
5.2 ATC Optimization Results ... 88
5.2.1 Neural Networks Problem Formulation ... 88
5.2.2 POD Problem Formulation .. 94
5.3 All-in-One (AiO) Problem Formulation ... 97
5.4 AiO Optimization Results .. 99
5.5 Summary .. 103

CHAPTER VI ... 104

Assessment and Implications of VVF Reduced Representations .. 104
6.1 Quantification of Efficiency .. 104
6.1.1 RBF Neural Networks ... 104
6.1.2 Proper Orthogonal Decomposition ... 105
6.2 Quantification of Accuracy ... 105
6.2.1 RBF Neural Networks ... 105
6.2.2 Proper Orthogonal Decomposition ... 110
6.3 Overall Implications of VVF Reduced Representations .. 111
LIST OF TABLES

3.1 Estimated Values of IM Model Parameters [30] ... 34
3.2 Estimated Values of Mass Distribution and Packaging Properties 48
3.3 Estimated Vehicle Analysis Model Parameters ... 52
5.1 Bound Constraints for Top Level Subproblem ... 82
5.2 Bound Constraints for Bottom Level Subproblem .. 83
5.3 Bound Constraints for Top Level Subproblem: Neural Networks Problem Formulation 87
5.4 Optimal Design Vector/Bound Constraint Activity for NN Problem Formulation, P11 Subproblem .. 91
5.5 Nonlinear Constraint Activity for NN Problem Formulation, P11 Subproblem 91
5.6 Optimal Design Vector/Bound Constraint Activity for NN Problem Formulation, P21 Subproblem .. 92
5.7 Optimal Consistency Constraint Vector and Penalty Weights 93
5.8 Optimal Coupling Variables for NN Problem Formulation ... 95
5.9 Bound Constraints for AiO Problem Formulation .. 100
5.10 Optimal Design Vector/Bound Constraint Activity for AiO Problem Formulation 101
5.11 Nonlinear Constraint Activity for AiO Problem Formulation .. 101
5.12 Optimal Coupling Variables for AiO Problem Formulation ... 102
6.1 AVASIM Results for NN at Optimal Design Points for NN and AiO Formulations 109
6.2 AVASIM Results for NN at Optimal Design Point for AiO Formulation 110
6.3 AVASIM Results for POD at Optimal Design Point for AiO Formulation 111
LIST OF FIGURES

1.1 Illustration of VVF Reduced Representation in Design Optimization Subproblems 2
2.1 ATC Hierarchical Decomposition [27] .. 17
2.2 ATC Information Flow [27] .. 20
2.3 Alternating Direction Method of Multipliers for Three Level System [27] 21
3.1 General Plan View of Allison’s EV [30] .. 28
3.2 Relationships among Analysis Models ... 31
3.3 Diagram of Induction Motor [30] .. 32
3.4 Equivalent Circuit Model of IM [30] ... 33
3.5 Typical IM Maximum/Minimum Torque Curves [30] .. 38
3.6 Sample IM Power Loss Map with Points Visited During Simulation [30] 42
3.7 Sample Efficiency Map with Points Visited During Simulation [30] 44
3.8 Typical Flat-Wound Lithium-Ion Battery Cell (after [33]) ... 46
3.9 Block Diagram of Powertrain Simulation Submodels [30] .. 52
3.10 SFUDS Profile [30] ... 53
3.12 Slip Data for Electric Vehicle Tire ... 57
4.1 Typical Neural Network Training Process .. 64
4.2 VVF Reduced Representation-Oriented Neural Network Training Process 65
4.3 VVF Reduced Representation-Oriented NN Training Process, Matrix Form 66
4.4 VVF Reduced Representation-Oriented NN Training Process, Single Vector 68
4.5 VVF Reduced Representation-Oriented POD ... 75
4.6 Hybrid POD/Image Warping Method...76
5.1 General Formulation of ATC Optimization Problem for EV Powertrain............79
5.2 Optimal Motor Power Loss Map for NN Problem Formulation.....................93
5.3 Optimal Motor Efficiency Map for NN Problem Formulation.......................94
5.4 Faulty Motor Power Loss Map for POD Formulation.................................96
5.5 Feasible Design Space of Two Maximum Torque Curve POD Variables.............97
5.6 Relationships among Analysis Models, AIO Problem Formulation..................99
5.7 Optimal Motor Power Loss Map for AiO Problem Formulation.....................103
5.8 Optimal Motor Efficiency Map for AiO Problem Formulation......................103
In formulating a design optimization problem for complex systems, it is often practical to separate the system into simpler, more manageable subsystem configurations. Decomposition-based optimization algorithms are typically used to solve these design problems, which require that partitions be made between the various subsystem models. Although these design problems are separated into individual subproblems, they are all linked together through consistency constraints that ensure a feasible design solution. These consistency constraints contain design variables that are shared between adjacent subproblems, thus linking the problems together. In general, this procedure increases the size of an individual subproblem because it consists of design variables that are local to the subproblem as well as design variables that couple adjacent subproblems. When these linking variables consist of a finite number of scalars, the problem size does not increase appreciably, and efficient optimization of the system is still feasible. However, in more complex decomposition-based optimization problems, it might be necessary to include linking variables that consist of functions, which are infinite-dimensional variables. This might occur, for example, in a vehicle powertrain system design problem that includes engine performance maps coupled between vehicle and engine design subproblems [2]. In such cases, ensuring consistency between two infinite-dimensional variables is not practically possible due to their high dimensionality. Therefore, discretization is typically applied to these functions,